Homework 1 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
 25.10.2013

Exercise 1. Let $a, b, c, d \in \mathbb{Z} . a$ is said to divide b if (and only if) there exists some $k \in \mathbb{Z}$ such that $a \cdot k=b$. Notation: $a \mid b$. Prove the following implications:
(a) $a \mid b$ and $b|c \Rightarrow a| c$.
(b) $a \mid b$ and $c|d \quad \Rightarrow \quad(a c)|(b d)$.
(c) $a \mid b$ and $a|c \Rightarrow a|(x b+y c) \forall x, y \in \mathbb{Z}$.

Exercise 2. Show the following properties for the greatest common divisor.
(a) Prove that: $a \in \mathbb{Z}_{m}$ invertible $\Leftrightarrow \operatorname{gcd}(a, m)=1$.
(b) Let $a, b \in \mathbb{Z}$ with $b \neq 0$ and $q, r \in \mathbb{Z}$ and $a=b q+r$ and $0 \leq r<b$. Prove that: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$.
(c) Show that $\mathbb{Z}_{m}^{*}=\left\{b \in \mathbb{Z}_{m} \mid \operatorname{gcd}(b, m)=1\right\}$ is a multiplicative group.
(d) Is 221 invertible modulo 2310 ?

Hint: For any $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that $\operatorname{gcd}(a, b)=a x+b y$.

Exercise 3. Let M be a finite set. A permutation π over M is a bijective function $\pi: M \rightarrow M$.
(a) How many permutations exist for $M=\{1,2, \ldots, n\}$?
(b) Show that the set of permutations over M forms a group together with the composition of functions. Is this group commutative, i.e., is the order of the composition of importance?

