Homework 4 in Advanced Methods of Cryptography - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier

22.11.2013

Solution to Exercise 9.

Theorem 4.3 shall be proven.
(a) X is a discrete random variable with $p_{i}=P\left(X=x_{i}\right), i=1, \ldots, m$. It holds

$$
H(X)=-\sum_{i} p_{i} \log p_{i} \geq 0
$$

as $p_{i} \geq 0$ and $-\log p_{i} \geq 0$ for $0<p_{i} \leq 1$ and $0 \cdot \log 0=0$ per definition.
Equality holds, if all addends are zero, i.e.,

$$
p_{i} \log p_{i}=0 \Leftrightarrow p_{i} \in\{0,1\} \quad i=1, \ldots, m,
$$

as $p_{i}>0$ and $-\log p_{i}>0$, thus, $-p_{i} \log p_{i}>0$ for $0<p_{i}<1$.
(b)

$$
\begin{aligned}
H(X)-\log m & =-\sum_{i} p_{i} \log p_{i}-\underbrace{\sum_{i} p_{i}}_{=1} \log m \\
& =\sum_{i: p_{i}>0} p_{i} \log \frac{1}{m p_{i}} \\
& =(\log e) \sum_{i: p_{i}>0} p_{i} \ln \frac{1}{m p_{i}} \\
& \ln z \leq z-1 \\
\leq & (\log e) \sum_{i: p_{i}>0} p_{i}\left(\frac{1}{m p_{i}}-1\right) \\
& =(\log e)\left(\sum_{i: p_{i}>0} \frac{1}{m}-1\right) \leq 0 .
\end{aligned}
$$

As $\ln z=z-1$ only holds for $z=1$ it follows that equality holds iff $p_{i}=1 / m$, $i=1, \ldots, m$. In particular, it follows $p_{i}>0, i=1, \ldots, m$.
(c) Define for $i=1, \ldots, m$ and $j=1, \ldots, d$

$$
p_{i \mid j}=P\left(X=x_{i} \mid Y=y_{j}\right) .
$$

Show $H(X \mid Y)-H(X) \leq 0$ which is equivalent to the claim.

$$
\begin{aligned}
H(X \mid Y)-H(X) & =-\sum_{i, j} p_{i, j} \log p_{i \mid j}+\sum_{i} p_{i} \log p_{i} \\
& =-\sum_{i, j} p_{i, j} \log \frac{p_{i, j}}{p_{j}}+\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log p_{i} \\
& =\log (e) \sum_{i, j: p_{i, j}>0} p_{i, j} \ln \frac{p_{i} p_{j}}{p_{i, j}} \\
& \ln z \leq z-1 \\
\leq & \log (e) \sum_{i, j: p i, j>0} p_{i, j}\left(\frac{p_{i} p_{j}}{p_{i, j}}-1\right) \\
& =\log (e)\left(\sum_{i, j: p_{i, j}>0} p_{i} p_{j}-1\right) \leq 0
\end{aligned}
$$

Note that from $p_{i, j}>0$ it follows $p_{i}, p_{j}>0$. Equality hold for $\frac{p_{i} p_{j}}{p_{i, j}}=1$ which is equivalent to X and Y being stochastically independent.
This means that the transinformation $I(X, Y)=H(X)-H(X \mid Y)$ is nonnegative.
(d) It holds

$$
\begin{aligned}
H(X, Y) & =-\sum_{i, j} p_{i, j} \log p_{i, j} \\
& =-\sum_{i, j} p_{i, j}\left[\log p_{i, j}-\log p_{i}+\log p_{i}\right] \\
& =-\sum_{i, j} p_{i, j} \log \underbrace{\frac{p_{i, j}}{p_{i}}}_{p_{j \mid i}}-\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log p_{i} \\
& =H(Y \mid X)+H(X) .
\end{aligned}
$$

(e) It holds

$$
H(X, Y) \stackrel{(d)}{=} H(X)+H(Y \mid X) \stackrel{(c)}{\leq} H(X)+H(Y)
$$

with equality as in (c) iff X and Y are stochastically independent.

