Exercise 2 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-10-31

Problem 4. (calculating the basis) Given $a^{13} \equiv 17 \bmod 31$, calculate the basis a.

Problem 5. (Rabin cryptosystem) Alice and Bob are using the Rabin Cryptosystem. Bob uses the public key $n=4757=67 \cdot 71$. All integers in the set $\{1, \ldots, n-1\}$ are represented as a bit sequence of 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1 . Alice sends the cryptogram $c=1935$. Decipher this cryptogram.

Problem 6. (modified Rabin cryptosystem) Consider the modification of the Rabin Cryptosystem in which $e_{K}(m)=c=m \cdot(m+B) \bmod n$, where $B \in \mathbb{Z}_{n}$ is part of the public key. Supposing that $p=199, q=211, n=p q$, and $B=1357$, perform the following computations.
a) Compute the encryption $y=e_{K}(32767)$.
b) Determine the four possible decryptions of this given ciphertext y.

