Exercise 3 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-11-07

Problem 7. (properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_p^*$. Show the following:

- a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_0$ with $a \equiv g^i \mod p$.
- **b)** If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_p^*$ are quadratic residues modulo p.
- c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 8. (coin flipping) Consider the coin flipping protocol. Let p > 2 be prime.

- **a)** Show that if $x \equiv -x \mod p$, then $x \equiv 0 \mod p$.
- **b)** Suppose $x, y \not\equiv 0 \mod p$ and $x^2 \equiv y^2 \mod p^2$. Show that $x \equiv \pm y \mod p^2$.
- c) Suppose Alice cheats when flipping coins over the telephone by choosing p = q. Show that Bob almost always loses if he trusts Alice.
- d) Bob suspects that Alice has cheated. Why is it not wise for Alice to choose $n = p^2$ as the secret key? Can Bob discover her attempt to cheat? Can Bob use Alice' cheating as an advantage for himself?

Problem 9. (Legendre symbol) Let $\left(\frac{a}{p}\right)$ be the Legendre symbol, with p > 2 prime. Prove the following calculation rules.

a) $\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$

RNTHAACHEN

- **b**) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$
- c) $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$, if $a \equiv b \mod p$

Problem 10. (Jacobi symbol) Show that Algorithm 6 from the lecture notes computes the Jacobi symbol.

Hint: Use the following equations for any odd integers n, m > 2.

$$\begin{pmatrix} \frac{m}{n} \end{pmatrix} = (-1)^{\frac{m-1}{2}\frac{n-1}{2}} \cdot \left(\frac{n}{m}\right) \quad \text{law of quadratic reciprocity}$$
$$\begin{pmatrix} \frac{2}{n} \end{pmatrix} = (-1)^{\frac{n^2-1}{8}}$$