Exercise 3 in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-11-07

Problem 7. (properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_{p}^{*}$. Show the following:
a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_{0}$ with $a \equiv g^{i}$ $\bmod p$.
b) If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_{p}^{*}$ are quadratic residues modulo p.
c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 8. (coin flipping) Consider the coin flipping protocol. Let $p>2$ be prime.
a) Show that if $x \equiv-x \bmod p$, then $x \equiv 0 \bmod p$.
b) Suppose $x, y \not \equiv 0 \bmod p$ and $x^{2} \equiv y^{2} \bmod p^{2}$. Show that $x \equiv \pm y \bmod p^{2}$.
c) Suppose Alice cheats when flipping coins over the telephone by choosing $p=q$. Show that Bob almost always loses if he trusts Alice.
d) Bob suspects that Alice has cheated. Why is it not wise for Alice to choose $n=p^{2}$ as the secret key? Can Bob discover her attempt to cheat? Can Bob use Alice' cheating as an advantage for himself?

Problem 9. (Legendre symbol) Let $\left(\frac{a}{p}\right)$ be the Legendre symbol, with $p>2$ prime. Prove the following calculation rules.
a) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$
b) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
c) $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$, if $a \equiv b \bmod p$

Problem 10. (Jacobi symbol) Show that Algorithm 6 from the lecture notes computes the Jacobi symbol.
Hint: Use the following equations for any odd integers $n, m>2$.

$$
\begin{aligned}
\left(\frac{m}{n}\right) & =(-1)^{\frac{m-1}{2} \frac{n-1}{2}} \cdot\left(\frac{n}{m}\right) \quad \text { law of quadratic reciprocity } \\
\left(\frac{2}{n}\right) & =(-1)^{\frac{n^{2}-1}{8}}
\end{aligned}
$$

