Exercise 4 in Advanced Methods of Cryptography
 Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-11-14

Problem 11. (Goldwasser-Micali) Using the Goldwasser-Micali cryptosystem, decrypt a ciphertext. Start by finding the cryptosystem's parameters.
a) Find a pseudo-square modulo $n=p \cdot q=31 \cdot 79$ by using the algorithm from the lecture notes. Start with $a=10$ and increase a by 1 until you find a quadratic non-residue modulo p. For b, start with $b=17$ and proceed analoguously.
b) Decrypt the ciphertext $c=(1418,2150,2153)$.

Problem 12. (decpiher Blum-Goldwasser) Bob receives the following cryptogram from Alice:

$$
c=\left(101010111000011010001011100101111100110111000, x_{t+1}=1306\right)
$$

The message m has been encrypted using the Blum-Goldwasser cryptosystem with public key $n=1333=31 \cdot 43$. The letters of the Latin alphabet A, \ldots, Z are represented by the following 5 bit scheme: $A=00000, B=00001, \ldots, Z=11001$. Decipher the cryptogram c. Remark: The security requirement to use at most $h=\left\lfloor\log _{2}\left\lfloor\log _{2}(n)\right\rfloor\right\rfloor$ bits of the Blum-Blum-Shub generator is violated in this example. Instead, 5 bits of the output are used.

Problem 13. (chosen-ciphertext attack on Blum-Goldwasser) Assume that an attacker has access to the decoding-hardware of the Blum-Goldwasser cryptosystem computing the message m when fed with a cryptogram c. The decoded output is not the value x_{0}, but only the message m.

Further assume that it is possible to compute ${ }^{1}$ a quadratic residue modulo n, when knowing the last $h=\left\lfloor\log _{2}\left\lfloor\log _{2}(n)\right\rfloor\right\rfloor$ bits of the given quadratic residue.
Show that the given cryptosystem is not secure against chosen-ciphertext attacks.

[^0]
[^0]: ${ }^{1}$ Assume that a function $f:\{0,1\}^{h} \rightarrow \mathbb{Z}_{n}$ with $f\left(b_{i}\right)=x_{i}, 1 \leq i \leq t$, exists.

