Exercise 7 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-12-05

Problem 21. (verifying an ElGamal signature) The hashed message h(m) = 65 was signed using the ElGamal signature scheme with public parameters y = 399, p = 859, and a = 206.

Verify the signature (r, s) = (373, 15).

RNTHAACHEN

Problem 22. (forging an ElGamal signature without hash function) Let p be prime with $p \equiv 3 \mod 4$, and let a be a primitive element modulo p. Furthermore, let $y \equiv a^x \mod p$ be a public ElGamal key and let $a \mid p-1$. Here, no hash function is used for the ElGamal signature. Assume that it is possible to find $z \in \mathbb{Z}$ such that $a^{rz} \equiv y^r \mod p$.

Show that (r, s) with $s = (p - 3)2^{-1}(m - rz)$ yields a valid ElGamal signature for a chosen message m.

Problem 23. (forging an ElGamal signature with hash function) An attacker has intercepted one valid signature (r, s) of the ElGamal signature scheme and a hashed message h(m) which is invertible modulo p - 1.

Show that the attacker can generate a signature (r', s') for any hashed message h(m'), if $1 \le r < p$ is not verified.

Problem 24. (variations of the ElGamal signature scheme) There are many variations of the ElGamal signature scheme which do no compute the signing equation as $s = k^{-1}(h(m) - xr) \mod (p-1)$.

- a) Consider the signing equation $s = x^{-1}(h(m) kr) \mod (p-1)$. Show that $a^{h(m)} \equiv y^s r^r \mod p$ is a valid verification procedure.
- b) Consider the signing equation $s = xh(m) + kr \mod (p-1)$. Propose a valid verification procedure.
- c) Consider the signing equation $s = xr + kh(m) \mod (p-1)$. Propose a valid verification procedure.