Exercise 11 in Advanced Methods of Cryptography Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe

Problem 35. (elliptic curve discriminant) Consider a polynomial in $x \in \mathbb{R}$ of degree n and its first derivative:

$$
f(x)=f_{n} x^{n}+\cdots+f_{1} x+f_{0}, \quad f^{\prime}(x)=n f_{n} x^{n-1}+\cdots+f_{2} x+f_{1}
$$

The discriminant Δ is an invariant to evaluate the multiplicity of roots in a polynomial $f(x)$. It is computed by:

$$
\Delta=(-1)^{\binom{n}{2}} \cdot \operatorname{Res}\left(f, f^{\prime}\right) \frac{1}{f_{n}}
$$

The exponent $\binom{n}{2}$ denotes the binomial coefficient of n over 2 . The resultant $\operatorname{Res}(f, g)$ is used to compute shared roots in the polynomial $f(x)$ of degree n and polynomial $g(x)$ of degree m. The resultant is defined as the determinant of the $(m+n) \times(m+n)$ Sylvester matrix:

$$
\operatorname{Res}(f, g)=\operatorname{det}\left(\begin{array}{cccccccc}
f_{n} & & \cdots & & f_{0} & 0 & & 0 \\
0 & f_{n} & & \ldots & & f_{0} & & \\
& & \ddots & & & & \ddots & 0 \\
0 & & 0 & f_{n} & & \ldots & & f_{0} \\
g_{m} & & \cdots & & g_{0} & 0 & & 0 \\
0 & g_{m} & & \ldots & & g_{0} & & \\
& & \ddots & & & & \ddots & 0 \\
0 & & 0 & g_{m} & & \cdots & & g_{0}
\end{array}\right)
$$

a) Compute the discriminant Δ of the quadratic polynomial $f(x)=a x^{2}+b x+c$.
b) Compute the discriminant Δ of the cubic polynomial $f(x)=x^{3}+a x+b$.

Problem 36. (singular points on elliptic curves) Let $E: Y^{2}=X^{3}+a X+b$ be a curve over the field K with $\operatorname{char}(K) \neq 2,3$ and let $f:=Y^{2}-X^{3}-a X-b$.
A point $P=(x, y) \in E$ is called singular, if both formal partial derivatives $\partial f / \partial X(x, y)$ and $\partial f / \partial Y(x, y)$ vanish at P.
Prove for the discriminant Δ of the curve E that the following holds:

$$
\Delta \neq 0 \Leftrightarrow E \text { has no singular points. }
$$

