Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe
Tutorial 0

- Proposed Solution -

Wednesday, March 4, 2015

Solution of Problem 1

a) A quadratic residue (QR) modulo $p \Leftrightarrow \exists b \in \mathbb{Z}_{p}$ with $b^{2} \equiv a \bmod p$.

It holds $d^{2} \equiv\left(a^{\frac{p-1}{4}}\right)^{2} \equiv\left(b^{2}\right)^{\frac{p-1}{2}} \equiv b^{p-1} \equiv 1 \bmod p$ by Fermat.
It is $\left(d^{2}-1\right)=(d-1)(d+1)$, as \mathbb{Z}_{n} is a field, and it follows $d \equiv 1$ or $d \equiv-1 \bmod p$.
b) We consider the two cases of $d= \pm 1$:

$$
\begin{aligned}
& \text { Case } d=1 \Rightarrow r^{2} \equiv\left(a^{\frac{p+3}{8}}\right)^{2} \equiv a^{\frac{p+3}{4}} \equiv\left(a^{\frac{p-1}{4}}\right) a \equiv d a \equiv a \bmod p \\
& \text { Case } d=-1 \Rightarrow r^{2} \equiv\left(2 a(4 a)^{\frac{p-5}{8}}\right)^{2} \equiv 4 a^{2}(4 a)^{\frac{p-5}{4}} \equiv a(4 a)^{\frac{p-1}{4}} \equiv a\left(2^{\frac{p-1}{2}}\right)\left(a^{\frac{p-1}{4}}\right) \equiv \\
& a(-1) d \equiv a(-1)(-1) \equiv a \bmod p
\end{aligned}
$$

As $r^{2} \equiv a \bmod p$ holds in both cases, $(r,-r)$ are the only square roots of $a \bmod p$.
c) The parameters yield $p=53=5+6 \cdot 8 \equiv 5 \bmod 8$ and $q=37=5+4 \cdot 8 \equiv 5 \bmod 4$. \Rightarrow Algorithm SQR can be applied to compute the square roots:
$d_{p} \leftarrow a^{\frac{p-1}{4}} \bmod p$

$$
\begin{aligned}
d_{p} & \equiv 17^{13} \equiv 17\left((17)^{4}\right)^{3} \equiv 17(46)^{3} \equiv 17 \cdot 28 \equiv 52 \equiv-1 \\
d_{q} & \equiv 10^{9} \equiv 1 \quad \bmod 37 \\
d_{p} & =-1 \Rightarrow r_{p} \equiv 34(68)^{6} 34\left(15^{6}\right) \equiv 34 \cdot 24 \equiv 21 \quad \bmod 53 \\
d_{q} & =1 \Rightarrow r_{q} \equiv 10^{5} 26 \quad \bmod 37
\end{aligned}
$$

The square roots of 17 modulo 53 are 21 and 32 .
The square roots of 10 modulo 37 are 11 and 26. Alternatively, use SQM: $13=(1101)_{2}$ and compute $17^{13} \bmod 53$:

i	b_{i}	x	x^{2}	$17 x^{2}$
2	1	17	24	37
1	0	3	44	-
0	1	44	28	52

d) It is given: $7 \cdot 53-10 \cdot 37=1=s p+t q=b+a=371-370$

Then, all possible solutions for the message are given as: $\pm a x \pm b y$, where x is the square root of $c=1342 \bmod p$, and y is the square root of $c=1342 \bmod q$.
$1342 \bmod 53=17$ and $1342 \bmod 37=10$ such that the square roots are given in (c) as 21 and 11 , respectively. $n=p q=53 \cdot 37=1961$.

$$
\begin{aligned}
& f_{1}=-370 \cdot 21+371 \cdot 11=-7770+4081 \equiv 74+159 \equiv 233 \Rightarrow(\ldots 001)_{2} \\
& f_{2}=-370 \cdot 21-371 \cdot 11=74-159 \equiv 1876 \Rightarrow(\ldots 000)_{2} \\
& f_{3}=+370 \cdot 21-371 \cdot 11=-74-159 \equiv 1728 \Rightarrow(\ldots 000)_{2} \\
& f_{4}=+370 \cdot 21+371 \cdot 11=-74+159 \equiv 85 \Rightarrow(\ldots 101)_{2}
\end{aligned}
$$

\Rightarrow The message is $m=85$.

Solution of Problem 2

a) Since a symmetric cryptosystem is used, and since Bob knows the key k, he may compute $x=E_{k}^{-1}(y)$. Therefore, he knows if x is even or odd. Hence, he may always win.
b) The basic four requirements on cryptographic hash functions are:

- Given $m \in \mathcal{M}, h(m)$ is easy to compute.
- preimage resistant, i.e., given $y \in \mathcal{Y}$ it is infeasible to find $m \in \mathcal{M}$ such that $h(m)=y$.
- second preimage resistant, i.e., given $m \in \mathcal{M}$, it is infeasible to find $m^{\prime} \neq m$ with $h\left(m^{\prime}\right)=h(m)$.
- (strongly) collision free, i.e., it is infeasible to find $m \neq m^{\prime}$ with $h(m)=h\left(m^{\prime}\right)$.
c) The solution is analogous to the given protocol [E_{k} is exchanged by $\left.h\right]$

1) Alice chooses a number x, calculates $y=h(x)$, and sends y to Bob
2) Bob guesses, if x is even or odd, and sends his guess to Alice
3) Alice sends x to Bob

If Bob as guessed correctly, Bob wins. Otherwise Alice wins.
[This protocol is secure since Alice cannot find another x^{\prime} with $y=h\left(x^{\prime}\right)$, see b$)$. Moreover, Bob cannot calculate x by means of the given y, see b$)$.]
d) Protocol based on the factorization problem:

1) Alice chooses prime numbers p, q with $p, q \bmod 4 \equiv 1$ or $p, q \bmod 4 \equiv 3$.
2) Alice computes $n=p q$ ands send n to Bob
3) Bob guesses if $p, q \bmod 4 \equiv 1$ or $p, q \bmod 4 \equiv 3$ and sends his guess to Alice
4) A sends p, q to Bob.

If Bob has guessed correctly, Bob wins. Otherwise Alice wins.

Solution of Problem 3

a) In general, the formula $E: Y^{2}=X^{3}+a X+b$ with $a, b \in K$ describes an elliptic curve. Here, we have $a=2, b=6$ with $a, b \in \mathbb{F}_{7}$.
E is an elliptic curve over \mathbb{F}_{7}, since the discriminant is:

$$
\begin{equation*}
\Delta=-16\left(4 a^{3}+27 b^{2}\right) \equiv-16064 \equiv 1 \not \equiv 0 \quad(\bmod 7) \tag{1}
\end{equation*}
$$

b) The point-counting algorithm is solved in a table:

z	z^{2}	z^{3}	$z^{3}+2 z+6$
0	0	0	6
1	1	1	2
2	4	1	4
3	2	6	4
4	2	1	1
5	4	6	1
6	1	6	3

From this table we obtain:

$$
\begin{gathered}
Y^{2} \in\{0,1,2,4\}, \\
X^{3}+2 X+6 \in\{0,1,2,3,4,6\},
\end{gathered}
$$

and hence it follows:

$$
E\left(\mathbb{F}_{7}\right)=\{(1,3),(1,4),(2,2),(2,5),(3,2),(3,5),(4,1),(4,6),(5,1),(5,6), \mathcal{O}\}
$$

The inverses of each point are:

$$
\begin{aligned}
-(1,3) & =(1,4), \\
-(2,2) & =(2,5), \\
-(3,2) & =(3,5), \\
-(4,1) & =(4,6), \\
-(5,1) & =(5,6), \\
-\mathcal{O} & =\mathcal{O}
\end{aligned}
$$

c) The order of the group is $\left.\operatorname{ord}\left(E\left(\mathbb{F}_{q}\right)\right)=\# E\left(\mathbb{F}_{q}\right)\right)=11$.
d) To obtain the discrete logarithm for $Q=a P$, we rearrange the equation:

$$
\begin{aligned}
c P+d Q & =c^{\prime} P+d^{\prime} Q \\
\Rightarrow\left(c-c^{\prime}\right) P & =\left(d^{\prime}-d\right) Q=\left(d^{\prime}-d\right) a P \\
\Rightarrow a & \equiv\left(c-c^{\prime}\right)\left(d^{\prime}-d\right)^{-1} \quad(\bmod (\operatorname{ord}(P)))
\end{aligned}
$$

As $\operatorname{gcd}\left(d^{\prime}-d, n\right)=1$ holds, the discrete logarithm a exists.
e) The left-hand side and the right-hand side of (2) are evaluated and compared:

$$
\begin{aligned}
2 P & =(4,1)+(4,1)=\left(x_{3}, y_{3}\right) \\
x_{3} & =\left(\left(3 \cdot 4^{2}+2\right)(2 \cdot 1)^{-1}\right)^{2}-2 \cdot 4 \\
& \equiv\left((3 \cdot 2+2) 2^{-1}\right)^{2}+6 \equiv(8 \cdot 4)^{2}+6 \equiv 1 \quad(\bmod 7) \\
y_{3} & =(8 \cdot 4)(4-1)-1 \equiv 4 \quad(\bmod 7) \\
\Rightarrow 2 P & =(1,4)
\end{aligned}
$$

For the inverse of 2 we have: $1=7+2(-3) \Rightarrow 2^{-1} \equiv 4(\bmod 7)$.

$$
\begin{aligned}
2 P+4 Q & =(1,4)+(3,5)=\left(x_{3}, y_{3}\right) \\
x_{3} & =\left((5-4)(3-1)^{-1}\right)^{2}-1-3 \equiv\left(1 \cdot 2^{-1}\right)^{2}-4 \\
& \equiv 5 \quad(\bmod 7) \\
y_{3} & =(1 \cdot 4)(1-5)-4 \equiv 4(-4)-4 \equiv 1 \quad(\bmod 7) \\
\Rightarrow 2 P+4 Q & =(5,1) \\
-P-3 Q & =-(4,1)+(5,6)=(4,6)+(5,6)=\left(x_{3}, y_{3}\right) \\
x_{3} & =0-4-5 \equiv 5 \quad(\bmod 7) \\
y_{3} & =0-6 \equiv 1 \quad(\bmod 7) \\
\Rightarrow-P-3 Q & =(5,1)
\end{aligned}
$$

Equation (2) is fulfilled. The discrete logarithm is:

$$
a=(2-(-1))((-3)-4)^{-1} \equiv 3(-7)^{-1} \equiv 3 \cdot 3 \equiv 9 \quad(\bmod 11)
$$

