Review Exercise in Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2015-03-04

Problem 1. (A variant of the Rabin cryptosystem) A prime number $p \equiv 5 \bmod 8$, a quadratic residue a modulo p and the following algorithm are given.

```
Algorithm 1 SQR: Square roots with \(p \equiv 5 \bmod 8\)
Input: Prime number \(p\) with \(p \equiv 5 \bmod 8\) and quadratic residue \(a\) modulo \(p\)
Output: Square roots \((r,-r)\) of \(a\) modulo \(p\)
\(d \leftarrow a^{\frac{p-1}{4}} \bmod p\)
if \((d=1)\) then
    \(r \leftarrow a^{\frac{p+3}{8}} \bmod p\)
end if
if \((d=p-1)\) then
    \(r \leftarrow 2 a(4 a)^{\frac{p-5}{8}} \bmod p\)
end if
return \((r,-r)\)
```

a) Show that the variable d in algorithm SQR can only take the values 1 or $p-1$.
b) Suppose that $2^{\frac{p-1}{2}} \equiv-1 \bmod p$ holds. Prove that algorithm SQR computes both square roots of a modulo p.

A variant of the Rabin cryptosystem uses algorithm SQR and is accordingly defined for prime numbers $p, q \equiv 5 \bmod 8$ with $n=p \cdot q$.
The prime numbers $p=53, q=37$, and the ciphertext $c=1342=m^{2} \bmod n$ are given. By agreement the message m ends on 101 in its binary representation.
c) Compute the square roots of 17 modulo 53 and 10 modulo 37 .
d) Decipher the message m. You may use $7 \cdot 53-10 \cdot 37=1$ for your computation.

Problem 2. (Coin Tossing protocols via telephone) This problem deals with several protocols for realizing a coin toss via telephone. The following symmetric cryptosystem is used for realizing coin tossing over the telephone. The protocol actions are as follows:

- A and B agree upon a common key k.
- A chooses a number x, encrypt it as $y=E_{k}(x)$, and sends y to B.
- B guesses, if x is even or odd, and sends his guess to A.
- A sends x to B.

If B has guessed correctly, B wins, otherwise A wins.
a) Which player can always win? Substantiate your answer.

In the following a cryptographic hash function is employed.
b) State the four basic requirements on cryptographic hash functions.
c) Give a protocol for realizing a coin toss which utilizes a cryptographic hash function.

Finally, a protocol for tossing a coin over the telephone based on the factorization problem shall be derived. The protocol starts with:

- A chooses prime numbers p, q with $p, q \bmod 4=1$ or $p, q \bmod 4=3$.
d) Complete the protocol.

Problem 3. (Pollard Rho Factoring Method) Consider the following function:

$$
E: Y^{2}=X^{3}+2 X+6
$$

a) Does E describe an elliptic curve in the field \mathbb{F}_{7} ? Give a reason.
b) Determine all points and their inverses in the \mathbb{F}_{7}-rational group.
c) What is the order of the group?

It is difficult to obtain the discrete logarithm a of Q to the base P for two points P, Q on an elliptic curve E. A possible approach is the application of the Pollard ρ-factoring method. The idea behind this method is to find numbers $c, d, c^{\prime}, d^{\prime} \in \mathbb{Z}$ for two given points P, Q on the elliptic curve with $\operatorname{gcd}\left(d-d^{\prime}, \operatorname{ord}(P)\right)=1$ such that the following equation holds:

$$
\begin{equation*}
c P+d Q=c^{\prime} P+d^{\prime} Q . \tag{1}
\end{equation*}
$$

d) Compute the discrete logarithm a of Q to the base P by means of (1).

An oracle provides the values $c=2, d=4, c^{\prime}=-1, d^{\prime}=-3, P=(4,1), Q=(1,3)$, $4 Q=(3,5)$, and $-3 Q=(5,6)$. Assume that P is a generator.
e) Show that equation (1) is fulfilled for these values and compute the discrete logarithm a of $Q=(1,3)$ to the base $P=(4,1)$.

