Exercise 5 in Advanced Methods of Cryptography - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe
2014-11-21

Solution of Problem 14

Recall the RSA cryptosystem: $n=p q, p \neq q$ prime and $e \in \mathbb{Z}_{\varphi(n)}$ with $\operatorname{gcd}(e, \varphi(n))=1$. The public key is (n, e).
Our pseudo-random generator based on RSA is:
a) Select a random seed $x_{0} \in\{2, \ldots, n-1\}$.
b) Iterate: $x_{i+1} \equiv x_{i}^{e} \bmod n, i=0, \ldots, t$.
c) Let b_{i} denote the last h bits of x_{i}, where $h=\left\lfloor\log _{2}\left\lfloor\log _{2}(n)\right\rfloor\right\rfloor$.
d) Return the pseudo-random sequence b_{1}, \ldots, b_{t} of $h \cdot t$ pseudo-random bits.

Solution of Problem 15

Recall Example 10.2: Select q prime, such that $p=2 q+1$ is also prime (Sophie-Germainprimes). Chose a, b as primitive elements modulo p. A message $m=x_{0}+x_{1} \cdot q$, with $0 \leq x_{0}, x_{1} \leq q-1$ is then hashed as

$$
h(m)=a^{x_{0}} b^{x_{1}} \quad \bmod p .
$$

This function is slow but collision free.
Claim. If $m \neq m^{\prime}$ and $h(m)=h^{\prime}(m)$, then $k=\log _{a}(b) \bmod p$ can be determined.
In other words, we show that if $m \neq m^{\prime}$ with $h(m)=h^{\prime}(m)$ are known, the discrete logarithm $k=\log _{a}(b) \bmod p$ can be determined, which is known to be computationally infeasable. I.e., it is infeasable to find $m \neq m^{\prime}$ with $h(m)=h^{\prime}(m)$.

Proof. (proof by contradiction) Let $m=x_{0}+x_{1} \cdot q, m^{\prime}=x_{0}^{\prime}+x_{1}^{\prime} \cdot q$.

$$
\begin{array}{rlrl}
& & h(m) & =h^{\prime}(m) \\
& & \\
\Leftrightarrow & a^{x_{0}} b^{x_{1}} & \equiv a^{x_{0}^{\prime}} b^{x_{1}^{\prime}} & \\
\bmod p \\
\Leftrightarrow & a^{x_{0}} a^{k x_{1}} & \equiv a^{x_{0}^{\prime}} a^{k x_{1}^{\prime}} & \\
\bmod p \\
\Leftrightarrow & a^{k\left(x_{1}-x_{1}^{\prime}\right)-\left(x_{0}^{\prime}-x_{0}\right)} & \equiv 1 & \\
\bmod p
\end{array}
$$

Since a is a primitive element modulo p,

$$
\begin{array}{lll}
& k\left(x_{1}-x_{1}^{\prime}\right)-\left(x_{0}^{\prime}-x_{0}\right) \equiv 0 & \\
\Leftrightarrow & k\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} & \tag{*}\\
\bmod (p-1) \\
p-1) .
\end{array}
$$

As $m \neq m^{\prime}$, it holds that $x_{1}-x_{1}^{\prime} \not \equiv 0 \bmod (p-1)$. Show that $k=\log _{a}(b) \bmod p$ can be efficiently computed. Assume $1 \leq k, k^{\prime} \leq p-1$ fulfill (\star). Then,

$$
\begin{gathered}
k\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} \bmod (p-1) \wedge k^{\prime}\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} \bmod (p-1) \\
\Rightarrow\left(k-k^{\prime}\right)\left(x_{1}-x_{1}^{\prime}\right) \equiv 0 \bmod (p-1) .
\end{gathered}
$$

It holds $-(p-2) \leq k-k^{\prime} \leq p-2$ and $x_{1} \neq x_{1}^{\prime}$ and $-(q-1) \leq x_{1}-x_{1}^{\prime} \leq q-1$. Let $d=\operatorname{gcd}\left(x_{1}-x_{1}^{\prime}, p-1\right)$, then, with $(\star), d \mid x_{0}^{\prime}-x_{0}$.
(i) $d=1: k-k^{\prime} \equiv 0 \bmod (p-1) \Leftrightarrow k=k^{\prime} \bmod (p-1)$ has one solution for $1 \leq k, k^{\prime} \leq$ $p-1$.
(ii) $d>1$: With (\star)

$$
k\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right) \equiv \frac{x_{0}^{\prime}-x_{0}}{d} \quad \bmod \left(\frac{p-1}{d}\right)
$$

It holds $\operatorname{gcd}\left(\frac{x_{1}-x_{1}^{\prime}}{d}, \frac{p-1}{d}\right)=1$. With (i), it follows that ($\star \star$) has exactly one solution k_{0}, which can be determined by using the Extended Euclidean algorithm as in (i).

$$
\begin{aligned}
& r\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right)+s\left(\frac{p-1}{d}\right)=1 \\
\Rightarrow & \underbrace{r}_{k_{0}}\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right) \equiv \frac{x_{0}^{\prime}-x_{0}}{d} \quad \bmod \frac{p-1}{d}
\end{aligned}
$$

Recall $p-1=2 q \Rightarrow d \in\{1,2, q, 2 q\} \Rightarrow d \in 1,2$ as $\left(x_{1}-x_{1}^{\prime}\right) \leq q-1$. Check, if $a^{k_{0}} \underbrace{\left[\text { or } a^{k_{0}+\frac{p-1}{2}}\right]}_{d=2 \text { analogously }} \equiv b \bmod p$.

Solution of Problem 16

Given: two hash functions with output length of 64 bits and 128 bits.
a) How many messages have to be created, such that the probability of a collision exceeds 0.86 ?

Birthday paradox: k objects, n bins, $p_{k, n}$, the probability of "no collision", is bounded by

$$
\begin{aligned}
& p_{k, n} \leq \exp \left(-\frac{k(k-1)}{2 n}\right) \\
\Rightarrow & 1-p_{k, n} \geq 1-\exp \left(-\frac{k(k-1)}{2 n}\right) \geq p \\
\Leftrightarrow & \exp \left(-\frac{k(k-1)}{2 n}\right) \leq 1-p \\
\Leftrightarrow & k^{2}-k+2 n \log _{e}(1-p) \\
& =\left(k-\frac{1}{2}+\frac{1}{2} \sqrt{1-8 n \log _{e}(1-p)}\right) \cdot\left(k-\frac{1}{2}-\frac{1}{2} \sqrt{1-8 n \log _{e}(1-p)}\right) \geq 0
\end{aligned}
$$

With $n=2^{64} \approx 1.844 \cdot 10^{19}$ and $p=0.86$, we get $k_{64} \approx 8.517 \cdot 10^{9}$, and with $n=2^{128} \approx 3.403 \cdot 10^{38}$, we get $k_{128} \approx 3.658 \cdot 10^{19}$, where k_{64} and k_{128} denote the number of messages needed to get a collision with probability of $p=0.86$.
b) The following solution is an example and other solutions are possible. The main aspect of this exercise is to show the growth in resources for generating collisions the longer the hash function is.

Hardware resource	64 bit hash function	128 bit hash function
hash function executions	$k_{64}=8.517 \cdot 10^{9}$	$k_{128}=3.658 \cdot 10^{19}$
memory size	$k_{64} \cdot 64$ bits $\approx 63.5 \mathrm{GiB}$	$k_{128} \cdot 128$ bits $=5.45 \cdot 10^{11} \mathrm{GiB}$
comparisons	$\begin{aligned} & 0+1+2+\ldots+\left(k_{64}-1\right) \\ & =\sum_{i=0}^{k_{64}-1} i=\frac{1}{2} k_{64}\left(k_{64}-1\right) \\ & \approx 3.63 \cdot 10^{19} \end{aligned}$	$\frac{1}{2} k_{128}\left(k_{128}-1\right) \approx 6.69 \cdot 10^{38}$

