
Lehrstuhl für Theoretische Informationstechnik

Exercise 6 in Advanced Methods of Cryptography
- Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe
2014-11-28

Solution of Problem 17

a) With a block cipher EK(x) with block length k, the message is split into blocks mi of
length k each, m = (m0, . . . ,mn−1). Take m = (m0) and m̂ = (m0,m1,m1), m0,m1
arbitrary. Then,

h(m̂) = Em0(m0)⊕ Em0(m1)⊕ Em0(m1)︸ ︷︷ ︸
=0

= Em0(m0) = h(m) .

Thus, h is neither second preimage resistant nor collision free.
Given y ∈ Y , choose m0. Then calculate

c = Em0(m0) ,
m1 = Dm0(c⊕ y) .

It follows that

h(m0,m1) = Em0(m0)⊕ Em0(Dm0(c⊕ y)) = c⊕ c⊕ y = y .

Hence, h is not preimage resistant, either.

b) ĥ replaces XOR (⊕) by AND (�) and remains the same as h otherwise. Take
m = (m1,m1), with m1 chosen arbitraryly. Then,

ĥ = Em1(m1)� Em1(m1) = Em1(m1) = ĥ((m1)) .

ĥ is neither second preimage resistant nor collision free.

Solution of Problem 18

a) Let M = 10000 and δ = 1+
√

5
2 . Then,

h(k) = b M (kδ − bkδc)︸ ︷︷ ︸
<1︸ ︷︷ ︸

<10000

c

︸ ︷︷ ︸
≤9999

⇒ 0 ≤ h(k) ≤ 9999 .



It is not yet known if there is a k such that h(k) = 0 or h(k) = 9999.
This specific type of hash function is called the multiplicative method (Fibonacci-hash).
The hash values are almost uniformly distributed in [0, 9999]. Recall Fibonacci:
F0 = 0, F1 = 1, Fn = Fn−1 + Fn−2. Then,

lim
n→∞

Fn+1

Fn

= 1 +
√

5
2 ,

which is an irrational number.

b) Finding collisions is very hard in general, so use your computer:
h(1) = 6180 = h(10947) = h(1 + 10946)
h(2) = 2360 = h(6767) = h(2 + 6765)
h(3) = 8541 = h(10949) = h(3 + 10946)
h(4) = 4721 = h(10950) = h(4 + 10946)
h(5) = 901 = h(6770) = h(5 + 6765)

Note that h(10946) = 0 (21st Fibonacci number) and h(6765) = 9999 (20th Fibonacci
number).

Solution of Problem 19

Ci = Mi+1 ⊕ EK(Ci−1), i = 1, . . . , n− 1 (1)
MAC(n)

K = EK(Cn−1) (2)
C0 = M1 (3)
Ĉi = EK(Ĉi−1 ⊕Mi), i = 1, . . . , n− 1 (4)

M̂AC
(n)
K = EK(Ĉn−1 ⊕Mn) (5)
Ĉ0 = 0 (6)

We show that the equivalency
MAC(n)

K = M̂AC
(n)
K (7)

holds, by induction over n.

Proof. n = 1:

MAC(1)
K

(2)= EK(C0)
(3)= EK(M1)

(6)= EK(Ĉ0 ⊕M1)
(5)= M̂AC

(1)
K

n→ n+ 1:

MAC(n+1)
K

(2)= EK(Cn) (1)= EK(Mn+1 ⊕ EK(Cn−1))
(2)= EK

(
Mn+1 ⊕MAC(n)

K

)
(7)= EK

(
Mn+1 ⊕ M̂AC

(n)
K

)
(5)= EK

(
Mn+1 ⊕ EK

(
Ĉn−1 ⊕Mn

))
(4)= EK

(
Mn+1 ⊕ Ĉn

) (4)= Ĉn+1 = M̂AC
(n+1)
K



Solution of Problem 20

a) Alice sends to Bob:
c = e(m ‖ h(k2 ‖ m), k1) .

Bob validates as follows:

• d(c, k1) = m′ ‖ h(k2 ‖ m)
• compute h(k2 ‖ m′) with the known key k2

• verify h(k2 ‖ m) = h(k2 ‖ m′)

Background:

• two keys are use to separate encryption and validation
• e.g., two keys can have different security levels
• encryption can be omitted if the message is not secret, but integrity is still

ensured
• if a part of the key is lost, then the system is not entirely broken

b) Method (i): Let both, (K1, L1) and (K2, L2) belong to Bob.
First, Alice sends the following to Bob:

c = e(m ‖ h(s ‖ m) ‖ e(s,K2), K1) .

Then, Bob validates:

• d(c, L1) = m ‖ h(s ‖ m) ‖ e(s,K2)
• d(e(s,K2), L2) = s

• compute h(s ‖ m′) with session key s
• verify h(s ‖ m) = h(s ‖ m′).

Method (ii): Let (KA, LA) belong to Alice and (KB, LB) belong to Bob, then a possible
protocol for message validation is.

• Bob sends to Alice: c1 = e(s,KA)
• Alice calculates: d(c1, LA) = s

• Alice then sends to Bob: c2 = e(m ‖ h(s ‖ m), KB)
• Bob calculates d(c2, LB) = m ‖ h(s ‖ m), computes h(s ‖ m′) with session key s,

and verifies that h(s ‖ m) = h(s ‖ m′).

There are many more protocols possible.



c) There is no authentication for Alice and Bob. Eve can easily impersonate Alice:
Eve sends the following c to Bob using Bob’s public key:

c = e(m̃ ‖ h(s ‖ m̃) ‖ e(s,K2), K1)

with her own forged message m̃ impersonating Alice. Bob does not know that this
message is actually from Eve.
To counteract this attack, the message must be securely linked to Bob’s identity. This
demand can be accomplished by a signature. For instance:

c = e(m ‖ sigA(m) ‖ h(s ‖ sigA(m) ‖ e(s,K2), K1).


