

Exercise 8 in Advanced Methods of Cryptography - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Markus Rothe 2014-12-19

Solution of Problem 25

We have a generator $a \equiv g^{\frac{p-1}{q}} \mod p$, with $g \in \mathbb{Z}_p^*$, $q \mid p-1$, p,q prime and $a \neq 1$. By definition of the order of a group, we know that:

$$a^{\operatorname{ord}_p(a)} \equiv 1 \mod p.$$

Recall: $\operatorname{ord}_p(a) = \min\{k \in \{1, ..., \varphi(p)\} \mid a^k \equiv 1 \mod p\}$. With $a \neq 1 \to \operatorname{ord}_p(a) > 1$. Next, we compute a^q and substitute $g^{\frac{p-1}{q}}$:

$$a^q \equiv \left(g^{\frac{p-1}{q}}\right)^q \equiv g^{p-1} \stackrel{\text{Fermat}}{\equiv} 1 \mod p.$$

From this we obtain $1 < \operatorname{ord}_p(a) \le q$.

Yet to show: Does a $k \in \mathbb{Z}$ with k < q exist so that k is the order of the group? This is a proof by contradiction.

Assume the subgroup has indeed $k = \operatorname{ord}_p(a) < q$, i.e., $\exists k < q : k = \operatorname{ord}_p(a)$. Then:

$$a^q \equiv a^{lk+r}, \ l \in \mathbb{Z}, r < k,$$

 $\equiv a^r$
 $\stackrel{!}{\equiv} 1 \mod p.$

We distinguish two possible cases:

- $\operatorname{ord}_p(a) \nmid q \Rightarrow a^r \equiv 1 \mod p$, with $1 < r < \operatorname{ord}_p(a) \notin (\operatorname{Def. of } \operatorname{ord}_p(a))$
- $\operatorname{ord}_p(a) \mid q \Rightarrow a^0 \equiv 1 \mod p \checkmark$

Since q is prime \Rightarrow ord_p(a) | q there are only two divisors of q, namely 1 and q:

- $\operatorname{ord}_p(a) = 1 \notin (\operatorname{since} a \neq 1 \text{ is assumed})$
- \bullet or $\mathrm{ord}_p(a) = q \ \mbox{\mbox{$\rlap/$}\mbox{$\rlap/$}}$ (We obtain k = q and not the demanded k < q)

The cyclic subgroup has order q in \mathbb{Z}_p^* , if a is chosen according to the algorithm.

Solution of Problem 26

- a) We demand the following conditions on the two prime parameters p and q:
 - i) $2^{159} < q < 2^{160}$,
 - ii) $2^{1023} ,$
 - iii) q | p 1.

We use a stepwise approach going through i), ii), and iii).

Our suggested algorithm to find a pair of primes p and q is:

- 1) Get a random odd number q with $2^{159} < q < 2^{160}$.
- 2) Repeat step 1) if q is not prime. (e.g., use the Miller-Rabin Primality Test)
- 3) Get a random even number k with $\left\lceil \frac{2^{1023}-1}{q} \right\rceil < k < \left\lceil \frac{2^{1024}-1}{q} \right\rceil$ and set p = kq + 1.
- 4) If p is not prime, repeat step 3).

Check if the algorithm finds a correct pair of primes p, q according to i), ii), and iii):

- With step 1), $2^{159} < q < 2^{160}$ holds, as demanded in i). \checkmark
- Due to step 2), q is prime. \checkmark
- Due to step 3), it holds:

$$p = kq + 1 \stackrel{ii}{>} \left[\frac{2^{1023} - 1}{q} \right] q + 1 \ge 2^{1023},$$
$$p = kq + 1 \stackrel{ii}{<} \left[\frac{2^{1024} - 1}{q} \right] q + 1 \le 2^{1024},$$

and therefore $2^{1023} holds, as demanded in ii). <math display="inline">\checkmark$

- Step 3) also provides $p = kq + 1 \Leftrightarrow q \mid p 1$, as demanded in iii). An even k ensures that p is an odd number.
- Step 4) provides that p is also prime.

Altogether, the proposed algorithm works.

b) In steps 2) and 4), a primality test is chosen (here: Miller-Rabin Primality Test), such that the error probability for a composite q is negligible.

The success probability of finding a prime of size x is about $\frac{1}{\ln(x)}$. (cf. hint)

If even numbers (these are obviously not prime) are skipped, the success probability doubles. The success probability of finding a single prime is estimated by:

$$p_{\text{succ},p} \approx 2 \cdot \frac{|\{p \in \mathbb{Z} | p \leq n, p \text{ prime }\}|}{n}.$$

The combined probability of success for a pair of primes p and q is approximately:

$$= \frac{2}{\ln(2^{160})} \cdot \frac{2}{\ln(2^{1024})} = \frac{1}{80 \cdot 512 \cdot \ln(2)^2} \approx 5.08 \cdot 10^{-5}.$$

Solution of Problem 27

Choose a pair $(\tilde{u}, \tilde{v}) \in \mathbb{Z} \times \mathbb{Z}$ such that $gcd(\tilde{v}, q) = 1$, so that \tilde{v} is invertible modulo q. The forged signature is constructed by:

$$r \equiv (a^{\tilde{u}}y^{\tilde{v}} \mod p) \mod q,$$

$$s \equiv r\tilde{v}^{-1} \mod q,$$

Then (r, s) is a valid signature for the message $m = s\tilde{u} \mod q$. Check verification procedure of the DSA:

- 1. Check 0 < r < q, 0 < s < q. \checkmark (due to modulo q)
- 2. Compute $w \equiv s^{-1} \mod q$.
- 3. In this step, no hash-function is used by the given assumption, i.e., h(m) = m: $u_1 \equiv wm \equiv s^{-1}s\tilde{u} \equiv \tilde{u} \mod q$, $u_2 \equiv rw \equiv rs^{-1} \mod q$.
- 4. $v = a^{u_1} y^{u_2} \equiv a^{\tilde{u} + xrs^{-1}} \equiv a^{\tilde{u} + \tilde{v}x} \equiv a^{\tilde{u}} (a^x)^{\tilde{v}} \equiv (a^{\tilde{u}} y^{\tilde{v}} \mod p) \mod q$.
- 5. The forged DSA signature is valid, since v=r holds. \checkmark