Elliptic Curves

Definition The set of points (x,y), satisfying the equality

$$y^2 = x^3 + ax + b$$

with

 $4a^3 + 27b^2 \neq 0$

is called an *elliptic curve*. a, b, and the variables x and y are elements of the same algebraic structure M.

- \blacktriangleright Some point ∞ is included to form the neutral element.
- ▶ *a* and *b* are called parameters of the elliptic curve.

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals Graphical Representation of Addition

- Graphical Representation of Addition ► Define a line through P and Q.
 - ▶ The third intersecting point on the curve is -R.

Elliptic Curves over the Reals Graphical Representation of Addition ► Define a line through P and Q.

- The third intersecting point on the curve is -R.
- Mirror the point -R at the x-axis to obtain R = P + Q.

RNTHAACHEN

Elliptic Curves over the Reals Graphical Representation of Addition

- Special case $P + (-P) = \infty$
- \blacktriangleright ∞ is the neutral element w.r.t. addition of points.

Elliptic Curves over the Reals Graphically doubling a point, P + P

Graphically doubling a point, P + PDraw the tangent line at the elliptic curve in P.

• The second intersecting point of the tangent line defines -R.

Graphically doubling a point, P + PDraw the tangent line at the elliptic curve in P.

- The second intersecting point of the tangent line defines -R.
- Mirror -R at the x-axis to obtain R = 2P.

Elliptic Curves over the Reals Graphically doubling a point, P + P

• Special case $2P = \infty$, if $y_P = 0$

Elliptic Curves over the Reals Algebraic representation of addition

▶ R = P + Q with $P \neq \pm Q$:

$$s = \frac{y_P - y_Q}{x_P - x_Q}$$
$$x_R = s^2 - x_P - x_Q$$
$$y_R = -y_P + s(x_P - x_R)$$

Elliptic Curves over the Reals Algebraic representation of addition

▶ R = P + Q with $P \neq \pm Q$:

$$s = \frac{y_P - y_Q}{x_P - x_Q}$$
$$x_R = s^2 - x_P - x_Q$$
$$y_R = -y_P + s(x_P - x_R)$$

$$\blacktriangleright P + (-P) = \infty$$

Elliptic Curves over the Reals Algebraic representation of addition

▶ R = P + Q with $P \neq \pm Q$:

$$s = \frac{y_P - y_Q}{x_P - x_Q}$$
$$x_R = s^2 - x_P - x_Q$$
$$y_R = -y_P + s(x_P - x_R)$$

▶
$$P + (-P) = \infty$$

▶ $P + P \Rightarrow$ Doubling of points

Elliptic Curves over the Reals Algebraic doubling of points

•
$$R = 2P$$
 with $y_P \neq 0$:

$$s = \frac{3x_P^2 + a}{2y_P}$$
$$x_R = s^2 - 2x_P$$
$$y_R = -y_P + s(x_P - x_R)$$

Elliptic Curves over the Reals Algebraic doubling of points

•
$$R = 2P$$
 with $y_P \neq 0$:

$$s = \frac{3x_P^2 + a}{2y_P}$$
$$x_R = s^2 - 2x_P$$
$$y_R = -y_P + s(x_P - x_R)$$

▶
$$2P = \infty$$
, if $y_P = 0$

In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- ► No rounding errors, essential for deciphering messages.

In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- ► No rounding errors, essential for deciphering messages.

Elliptic curves over \mathbb{F}_p

 $y^2 = x^3 + ax + b \pmod{p}$ with a, b, x, y integers $\in \{0, 1, \dots, p-1\}$

In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- ► No rounding errors, essential for deciphering messages.

Elliptic curves over \mathbb{F}_p $y^2 = x^3 + ax + b \pmod{p}$ with a, b, x, y integers $\in \{0, 1, \dots, p-1\}$

$$y^2 = x^3 + x$$
 in \mathbb{F}_{23}

In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- ▶ No rounding errors, essential for deciphering messages.

Elliptic curves over \mathbb{F}_p $y^2 = x^3 + ax + b \pmod{p}$ with a, b, x, y integers $\in \{0, 1, \dots, p-1\}$

$$y^2 = x^3 + x$$
 in \mathbb{F}_{23}

Algebraic Formulae as above with reduction modulo p

Each $a \in \mathbb{F}_{p^k}$ is represented as coefficients $(a_{k-1}, \ldots, a_0) \in \{0, \ldots, p-1\}^k$ of a polynomial of order k-1:

$$f(x) = \sum_{i=0}^{k-1} a_i x^i = a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \dots + a_1 x + a_0$$

Each $a \in \mathbb{F}_{p^k}$ is represented as coefficients $(a_{k-1}, \ldots, a_0) \in \{0, \ldots, p-1\}^k$ of a polynomial of order k-1:

$$f(x) = \sum_{i=0}^{k-1} a_i x^i = a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \dots + a_1 x + a_0$$

Definition

A polynomial $f_{irr}(x)$ is called irreducible over the field \mathbb{F}_{p^k} , if

- $\blacktriangleright \ \deg \ f_{irr}(x) > 0$
- ▶ There is <u>no</u> factorization $f_{irr}(x) = g(x) \cdot h(x)$ with deg g(x) > 0 and deg h(x) > 0.

Each $a \in \mathbb{F}_{p^k}$ is represented as coefficients $(a_{k-1}, \ldots, a_0) \in \{0, \ldots, p-1\}^k$ of a polynomial of order k-1:

$$f(x) = \sum_{i=0}^{k-1} a_i x^i = a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \dots + a_1 x + a_0$$

Definition

A polynomial $f_{irr}(x)$ is called irreducible over the field \mathbb{F}_{p^k} , if

- deg $f_{irr}(x) > 0$
- ▶ There is <u>no</u> factorization $f_{irr}(x) = g(x) \cdot h(x)$ with deg g(x) > 0 and deg h(x) > 0.

Elliptic curve over \mathbb{F}_{p^k} $y^2 = x^3 + ax + b \pmod{f_{irr}}$ with a, b, x, y polynomials

Each $a \in \mathbb{F}_{p^k}$ is represented as coefficients $(a_{k-1}, \ldots, a_0) \in \{0, \ldots, p-1\}^k$ of a polynomial of order k-1:

$$f(x) = \sum_{i=0}^{k-1} a_i x^i = a_{k-1} x^{k-1} + a_{k-2} x^{k-2} + \ldots + a_1 x + a_0$$

Definition

A polynomial $f_{irr}(x)$ is called irreducible over the field \mathbb{F}_{p^k} , if

- ▶ deg $f_{irr}(x) > 0$
- ▶ There is <u>no</u> factorization $f_{irr}(x) = g(x) \cdot h(x)$ with deg g(x) > 0 and deg h(x) > 0.

Elliptic curve over \mathbb{F}_{p^k} $y^2 = x^3 + ax + b \pmod{f_{irr}}$ with a, b, x, y polynomials

Algebraic formulae as above with reduction modulo f_{irr}

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User B

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User A

User B

▶ selects an integer $k_A \in \{2, ..., n-1\}$ at random.

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User A

User B

selects an integer
k_A ∈ {2,...,n-1} at random.
Q = k_AG

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User A

selects an integer
k_A ∈ {2,...,n-1} at random.
Q = k_AG

User B

▶ selects an integer
k_B ∈ {2,...,n-1} at random.

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User A

selects an integer
k_A ∈ {2,...,n-1} at random.
Q = k_AG

User B

selects an integer
$$k_B \in \{2, \dots, n-1\}$$
 at random.

$$\blacktriangleright R = k_B G$$

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User A

- Selects an integer k_A ∈ {2,...,n-1} at random.
- $\blacktriangleright \ Q = k_A G$
- transmits point Q to user B.

User B

- ▶ selects an integer $k_B \in \{2, ..., n-1\}$ at random.
- $\blacktriangleright R = k_B G$
- transmits point R to user A.

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User A

- Selects an integer k_A ∈ {2,...,n-1} at random.
- $\blacktriangleright \ Q = k_A G$
- transmits point Q to user B.

$$\blacktriangleright K = k_A R = k_A k_B G$$

User B

- ▶ selects an integer $k_B \in \{2, ..., n-1\}$ at random.
- $\blacktriangleright R = k_B G$
- transmits point R to user A.

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

User A

- Selects an integer k_A ∈ {2,...,n-1} at random.
- $\blacktriangleright \ Q = k_A G$
- transmits point Q to user B.

$$\blacktriangleright K = k_A R = k_A k_B G$$

User B

- ▶ selects an integer $k_B \in \{2, ..., n-1\}$ at random.
- $\blacktriangleright R = k_B G$
- transmits point R to user A.

$$\blacktriangleright K = k_B Q = k_A k_B G$$

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

Private and public key of each user

Sender

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

Private and public key of each user

- \blacktriangleright Each user selects an integer private key $d \in \{2, \ldots, n-1\}$ at random.
- Q = dG is the public key.

Sender Receiver

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

Private and public key of each user

 \blacktriangleright Each user selects an integer private key $d \in \{2, \ldots, n-1\}$ at random.

•
$$Q = dG$$
 is the public key.

Sender

Receiver

• selects a random integer $k \in \{2, \ldots, n-1\}.$

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

Private and public key of each user

- \blacktriangleright Each user selects an integer private key $d \in \{2, \dots, n-1\}$ at random.
- Q = dG is the public key.

Sender

Receiver

- selects a random integer $k \in \{2, \ldots, n-1\}.$
- $\blacktriangleright C_1 = kG$
- $\blacktriangleright C_2 = M + kQ$

Cryptographic Framework

- Elliptic curve over the finite field \mathbb{F}_{p^k}
- Generator G of some cyclic subgroup of order n

Private and public key of each user

- \blacktriangleright Each user selects an integer private key $d \in \{2, \dots, n-1\}$ at random.
- Q = dG is the public key.

Sender

Receiver

 $\blacktriangleright M = C_2 - dC_1$

- selects a random integer $k \in \{2, \dots, n-1\}.$
- $\blacktriangleright C_1 = kG$
- $\blacktriangleright C_2 = M + kQ$