Elliptic Curves

Definition
The set of points (x, y), satisfying the equality

$$
\begin{gathered}
y^{2}=x^{3}+a x+b \\
\text { with } \\
4 a^{3}+27 b^{2} \neq 0
\end{gathered}
$$

is called an elliptic curve. a, b, and the variables x and y are elements of the same algebraic structure M.

- Some point ∞ is included to form the neutral element.
- a and b are called parameters of the elliptic curve.

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

- Simple graphical representation of the curve
- Graphical representation of addition and doubling of points

Elliptic Curves over the Reals

Graphical Representation of Addition

Elliptic Curves over the Reals

Graphical Representation of Addition

- Define a line through P and Q.
- The third intersecting point on the curve is $-R$.

Elliptic Curves over the Reals

Graphical Representation of Addition

- Define a line through P and Q.
- The third intersecting point on the curve is -R .
- Mirror the point $-R$ at the x-axis to obtain $\mathrm{R}=\mathrm{P}+\mathrm{Q}$.

$$
y^{2}=x^{3}-6 x+6
$$

Elliptic Curves over the Reals

Graphical Representation of Addition

- Special case $P+(-P)=\infty$
- ∞ is the neutral element w.r.t. addition of points.

Elliptic Curves over the Reals
Graphically doubling a point, $P+P$

Elliptic Curves over the Reals

Graphically doubling a point, $P+P$

- Draw the tangent line at the elliptic curve in P.
- The second intersecting point of the tangent line defines $-R$.

Elliptic Curves over the Reals

Graphically doubling a point, $P+P$

- Draw the tangent line at the elliptic curve in P.
- The second intersecting point of the tangent line defines $-R$.
- Mirror $-R$ at the x-axis to obtain $\mathrm{R}=2 \mathrm{P}$.

$$
y^{2}=x^{3}-6 x+6
$$

Elliptic Curves over the Reals

Graphically doubling a point, $P+P$

- Special case $2 P=\infty$, if $y_{P}=0$

Elliptic Curves over the Reals

Algebraic representation of addition

- $R=P+Q$ with $P \neq \pm Q$:

$$
\begin{aligned}
s & =\frac{y_{P}-y_{Q}}{x_{P}-x_{Q}} \\
x_{R} & =s^{2}-x_{P}-x_{Q} \\
y_{R} & =-y_{P}+s\left(x_{P}-x_{R}\right)
\end{aligned}
$$

Elliptic Curves over the Reals

Algebraic representation of addition

- $R=P+Q$ with $P \neq \pm Q$:

$$
\begin{aligned}
s & =\frac{y_{P}-y_{Q}}{x_{P}-x_{Q}} \\
x_{R} & =s^{2}-x_{P}-x_{Q} \\
y_{R} & =-y_{P}+s\left(x_{P}-x_{R}\right)
\end{aligned}
$$

- $P+(-P)=\infty$

Elliptic Curves over the Reals

Algebraic representation of addition

- $R=P+Q$ with $P \neq \pm Q$:

$$
\begin{aligned}
s & =\frac{y_{P}-y_{Q}}{x_{P}-x_{Q}} \\
x_{R} & =s^{2}-x_{P}-x_{Q} \\
y_{R} & =-y_{P}+s\left(x_{P}-x_{R}\right)
\end{aligned}
$$

- $P+(-P)=\infty$
- $P+P \Rightarrow$ Doubling of points

Elliptic Curves over the Reals

Algebraic doubling of points

- $R=2 P$ with $y_{P} \neq 0$:

$$
\begin{aligned}
s & =\frac{3 x_{P}^{2}+a}{2 y_{P}} \\
x_{R} & =s^{2}-2 x_{P} \\
y_{R} & =-y_{P}+s\left(x_{P}-x_{R}\right)
\end{aligned}
$$

Elliptic Curves over the Reals

Algebraic doubling of points

- $R=2 P$ with $y_{P} \neq 0$:

$$
\begin{aligned}
s & =\frac{3 x_{P}^{2}+a}{2 y_{P}} \\
x_{R} & =s^{2}-2 x_{P} \\
y_{R} & =-y_{P}+s\left(x_{P}-x_{R}\right)
\end{aligned}
$$

- $2 P=\infty$, if $y_{P}=0$

Elliptic Curves over Finite Fields

Finite field \mathbb{F}_{p}
In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- No rounding errors, essential for deciphering messages.

Elliptic Curves over Finite Fields

Finite field \mathbb{F}_{p}
In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- No rounding errors, essential for deciphering messages.

Elliptic curves over \mathbb{F}_{p}

$y^{2}=x^{3}+a x+b(\bmod p) \quad$ with a, b, x, y integers $\in\{0,1, \ldots, p-1\}$

Elliptic Curves over Finite Fields

Finite field \mathbb{F}_{p}

In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- No rounding errors, essential for deciphering messages.

Elliptic curves over \mathbb{F}_{p}
$y^{2}=x^{3}+a x+b(\bmod p) \quad$ with a, b, x, y integers $\in\{0,1, \ldots, p-1\}$

$$
y^{2}=x^{3}+x \text { in } \mathbb{F}_{23}
$$

Elliptic Curves over Finite Fields

Finite field \mathbb{F}_{p}

In cryptography elliptic curves over finite fields are used.

- Avoid floating point arithmetic.
- No rounding errors, essential for deciphering messages.

Elliptic curves over \mathbb{F}_{p}
$y^{2}=x^{3}+a x+b(\bmod p) \quad$ with a, b, x, y integers $\in\{0,1, \ldots, p-1\}$

$$
y^{2}=x^{3}+x \text { in } \mathbb{F}_{23}
$$

Algebraic Formulae as above with reduction modulo p

Elliptic Curves over Finite Fields

Finite field $\mathbb{F}_{p^{k}}$
Each $a \in \mathbb{F}_{p^{k}}$ is represented as coefficients $\left(a_{k-1}, \ldots, a_{0}\right) \in\{0, \ldots, p-1\}^{k}$ of a polynomial of order $k-1$:

$$
f(x)=\sum_{i=0}^{k-1} a_{i} x^{i}=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\ldots+a_{1} x+a_{0}
$$

Elliptic Curves over Finite Fields

Finite field $\mathbb{F}_{p^{k}}$

Each $a \in \mathbb{F}_{p^{k}}$ is represented as coefficients $\left(a_{k-1}, \ldots, a_{0}\right) \in\{0, \ldots, p-1\}^{k}$ of a polynomial of order $k-1$:

$$
f(x)=\sum_{i=0}^{k-1} a_{i} x^{i}=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\ldots+a_{1} x+a_{0}
$$

Definition

A polynomial $f_{i r r}(x)$ is called irreducible over the field $\mathbb{F}_{p^{k}}$, if

- $\operatorname{deg} f_{\text {irr }}(x)>0$
- There is no factorization $f_{i r r}(x)=g(x) \cdot h(x)$ with $\operatorname{deg} g(x)>0$ and $\operatorname{deg} h(x)>0$.

Elliptic Curves over Finite Fields

Finite field $\mathbb{F}_{p^{k}}$

Each $a \in \mathbb{F}_{p^{k}}$ is represented as coefficients $\left(a_{k-1}, \ldots, a_{0}\right) \in\{0, \ldots, p-1\}^{k}$ of a polynomial of order $k-1$:

$$
f(x)=\sum_{i=0}^{k-1} a_{i} x^{i}=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\ldots+a_{1} x+a_{0}
$$

Definition

A polynomial $f_{i r r}(x)$ is called irreducible over the field $\mathbb{F}_{p^{k}}$, if

- $\operatorname{deg} f_{\text {irr }}(x)>0$
- There is no factorization $f_{i r r}(x)=g(x) \cdot h(x)$ with $\operatorname{deg} g(x)>0$ and $\operatorname{deg} h(x)>0$.

Elliptic curve over $\mathbb{F}_{p^{k}}$
$y^{2}=x^{3}+a x+b\left(\bmod f_{i r r}\right) \quad$ with a, b, x, y polynomials

Elliptic Curves over Finite Fields

Finite field $\mathbb{F}_{p^{k}}$

Each $a \in \mathbb{F}_{p^{k}}$ is represented as coefficients
$\left(a_{k-1}, \ldots, a_{0}\right) \in\{0, \ldots, p-1\}^{k}$ of a polynomial of order $k-1$:

$$
f(x)=\sum_{i=0}^{k-1} a_{i} x^{i}=a_{k-1} x^{k-1}+a_{k-2} x^{k-2}+\ldots+a_{1} x+a_{0}
$$

Definition

A polynomial $f_{i r r}(x)$ is called irreducible over the field $\mathbb{F}_{p^{k}}$, if

- $\operatorname{deg} f_{\text {irr }}(x)>0$
- There is no factorization $f_{i r r}(x)=g(x) \cdot h(x)$ with $\operatorname{deg} g(x)>0$ and $\operatorname{deg} h(x)>0$.

Elliptic curve over $\mathbb{F}_{p^{k}}$
$y^{2}=x^{3}+a x+b\left(\bmod f_{i r r}\right) \quad$ with a, b, x, y polynomials
Algebraic formulae as above with reduction modulo $f_{i r r}$

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n
User A
User B

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n
User A
User B
- selects an integer
$k_{A} \in\{2, \ldots, n-1\}$ at random.

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n
User A
User B
- selects an integer
$k_{A} \in\{2, \ldots, n-1\}$ at random.
- $Q=k_{A} G$

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

User A

- selects an integer
$k_{A} \in\{2, \ldots, n-1\}$ at random.
- $Q=k_{A} G$

User B

- selects an integer
$k_{B} \in\{2, \ldots, n-1\}$ at random.

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

User A

- selects an integer $k_{A} \in\{2, \ldots, n-1\}$ at random.
- $Q=k_{A} G$

User B

- selects an integer $k_{B} \in\{2, \ldots, n-1\}$ at random.
- $R=k_{B} G$

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

User A

- selects an integer $k_{A} \in\{2, \ldots, n-1\}$ at random.
- $Q=k_{A} G$
- transmits point Q to user B.

User B

- selects an integer
$k_{B} \in\{2, \ldots, n-1\}$ at random.
- $R=k_{B} G$
- transmits point R to user A.

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

User A

- selects an integer
$k_{A} \in\{2, \ldots, n-1\}$ at random.
- $Q=k_{A} G$
- transmits point Q to user B.
- $K=k_{A} R=k_{A} k_{B} G$

User B

- selects an integer
$k_{B} \in\{2, \ldots, n-1\}$ at random.
- $R=k_{B} G$
- transmits point R to user A.

Diffie-Hellman Key Exchange

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

User A

- selects an integer
$k_{A} \in\{2, \ldots, n-1\}$ at random.
- $Q=k_{A} G$
- transmits point Q to user B.
- $K=k_{A} R=k_{A} k_{B} G$

User B

- selects an integer
$k_{B} \in\{2, \ldots, n-1\}$ at random.
- $R=k_{B} G$
- transmits point R to user A.
- $K=k_{B} Q=k_{A} k_{B} G$

ElGamal Encryption over Elliptic Curves

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

Private and public key of each user

Sender
Receiver

ElGamal Encryption over Elliptic Curves

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

Private and public key of each user

- Each user selects an integer private key $d \in\{2, \ldots, n-1\}$ at random.
- $Q=d G$ is the public key.

Sender

Receiver

ElGamal Encryption over Elliptic Curves

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

Private and public key of each user

- Each user selects an integer private key $d \in\{2, \ldots, n-1\}$ at random.
- $Q=d G$ is the public key.

Sender

Receiver

- selects a random integer
$k \in\{2, \ldots, n-1\}$.

ElGamal Encryption over Elliptic Curves

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

Private and public key of each user

- Each user selects an integer private key $d \in\{2, \ldots, n-1\}$ at random.
- $Q=d G$ is the public key.

Sender

Receiver

- selects a random integer
$k \in\{2, \ldots, n-1\}$.
- $C_{1}=k G$
- $C_{2}=M+k Q$

ElGamal Encryption over Elliptic Curves

Cryptographic Framework

- Elliptic curve over the finite field $\mathbb{F}_{p^{k}}$
- Generator G of some cyclic subgroup of order n

Private and public key of each user

- Each user selects an integer private key $d \in\{2, \ldots, n-1\}$ at random.
- $Q=d G$ is the public key.

Sender

Receiver

- selects a random integer $k \in\{2, \ldots, n-1\}$.
- $C_{1}=k G$
- $C_{2}=M+k Q$

