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Solution of Problem 1

a) p = 13 is a prime number, a = 5 is a quadratic residue mod p.

1) v = b2 − 4a = b2 − 4 · 5 = b2 − 20.

Choose: b = 5⇒ v = 25− 20 = 5.
With Euler’s criterion, compute: (v

p
) = ( 5

11) = 5 10
2 = 1.

⇒ v = 5 is a quadratic residue mod 11.  

Choose: b = 6⇒ v = 36− 20 = 16 ≡ 5 mod 11.
⇒ v = 5 is a quadratic residue mod 11.  

Choose: b = 7⇒ v = 49− 20 = 29 ≡ 7 mod 11.
With Euler’s criterion, compute:
( 7

11) = 7 p−1
2 ≡ 7 10

5 ≡ 75 ≡ 49 · 49 · 7 ≡ 5 · 5 · 7 ≡ −1 mod 11.
⇒ v is a quadratic non-residue modulo 11. X

2) Insert the values for a and b into the polynomial f(x) = x2 − 7x+ 5.

3) Compute r = x
p+1

2 mod f(x):

x6 : (x2 − 7x+ 5) = x4 + 7x3 + 2x− 3
− (x6 − 7x5 + 5x4)
+ 7x5 − 5x4

− (7x5 − 5x4 + 2x3)
− 2x3

− (−2x3 + 3x2 − 10x)
− 3x2 + 10x
− (−3x2 + 10x− 4)
4

Hence, r = 4. Furthermore, and −r = −4 ≡ 7 mod 11⇒ (r,−r) = (4, 7).
// Validation r2 = a mod 11 is correct in both cases.

b) Both p, q satisfy the requirement for a Rabin cryptosystem: p, q ≡ 3 mod 4.
For c mod p ≡ 225 mod 11 ≡ 5, we already know the square roots xp,1 = 4, xp,2 = 7.



For c mod q ≡ 225 mod 23 ≡ 18, compute the square roots xq,1, xq,2 with the auxiliary
parameter kq = q+1

4 = 6:

xq,1 = ckq = 186 = 183 · 183 ≡ 13 · 13 ≡ 8 mod 23,
xq,2 = −8 ≡ 15 mod 23.

Formulate tq + sp = 1:

23 = 2 · 11 + 1
⇒ 1 = 23− 2 · 11

We set a = tq = 23 and b = sp = −22. Compute all four possible solutions:

m11 = axp,1 + bxq,1 = 23 · 4− 22 · 8 = −84 ≡ 169 mod 253⇒ (...1001)2  
m12 = axp,1 + bxq,2 = 23 · 4− 22 · 15 = −238 ≡ 15 mod 253⇒ (...1111)2  
m21 = axp,2 + bxq,1 = 23 · 7− 22 · 8 = −15 ≡ 238 mod 253⇒ (...1110)2  
m22 = axp,2 + bxq,2 = 23 · 7− 22 · 15 = −169 ≡ 84 mod 253⇒ (...0100)2 X

The solution is m = m21 = 84 since it ends on 0100 in the binary representation.
// Checking all solutions yields c = 225.

c) Since c = 225, on can to compute two square roots in the reals, m = ±15. If Nelson
chooses 1111, the result m = 15 is obvious, without knowing the factors in n = pq.



Solution of Problem 2

a) Easy to compute, preimage resistant, 2nd preimage resistant, collision-free.

b) Given, h(m) = m2 − 1 = (m + 1)(m − 1) mod L. Let m′ = m + kL with k ∈ N.
h(m′) = (m′+1)(m′−1) = (m+kL+1)(m+kL−1) ≡ (m+1)(m−1) mod L = h(m).

c) k0 = 57, k1 = 6, k2 = 36, k3 = 27, k4 = 24, k5 = 12, k6 = 3, k7 = 9, k8 = 34

d) For m = 10 we obtain the bitstream m̂ = 01010 (with n = 5 bits).
The number of zeros is 3 and t = 5 + blog2(5)c+ 1 = 8.
This leads to the concatenated message:

ŵ = 01010|011 = (a1, ..., a5)||(a6, ..., a8).

The positions with aj = 1 are 2, 4, 7, 8.
The signature for m = 10 is: (k2, k4, k7, k8) = (36, 24, 9, 34).
The public keys needed for this message are v2, v4, v7, v8.
The signature is correct since (v2, v4, v7, v8) = (h(k2), h(k4), h(k7), h(k8)) holds.

e) Eve can generate signatures for arbitrary messages as soon as all keys have been used
at least once. After Alice has signed a message, some keys are available for Eve so that
she can already sign some messages.



Solution of Problem 3
Schnorr Identification Scheme Solution

(a) Discrete Logarithm.

(b)

βyvr ≡ βk+arvr mod p

≡ βk+arβ−ar mod p

≡ βk mod p

≡ γ mod p

(c) A random number needs to be generated first. Step 1 requires an exponentiation modulo
p. Step 3 comprises one additon and one multiplication modulo p.
The modular exponentiation is computationally intensive, but this can be precomputed
offline, before the scheme is executed. That means the scheme is designed such that is
can be fast even if Alice uses a smartcard.

(d)

v = β−a = (βa)−1 = (205)−1 ≡ 30−1 ≡ 45 mod 71
γ = βk = 2010 ≡ 48 mod 71

y = k + ar = 10 + 5 · 4 ≡ 2 mod 7

γ = 48 !≡ βyvr = 202454 = 48 mod 71X



Solution of Problem 4
Elliptic Curves Solution

(a)

∆ = −16(4a3 + 27b2) mod 7
= −16(4a3 + 27 · 22) mod 7
= −16(4a3 + 108) mod 7
≡ 5(4a3 + 3) mod 7
= 20a3 + 15 mod 7

≡ 6a3 + 1
!
6≡ 0 mod 7

⇒ 6a3 6≡ −1 mod 7
⇔ 6a3 6≡ 6 mod 7
⇔ a3 6≡ 1 mod 7
⇒ a ∈ {0, 3, 5, 6} mod 7

(b) Begin by filling out the following table.

z z−1 3z z2 z3 z3 + 3z + 2
0 - 0 0 0 2
1 1 3 1 1 6
2 4 6 4 1 2
3 5 2 2 6 3
4 2 5 2 1 1
5 3 1 4 6 2
6 6 4 1 6 5

From the table we get

E3(F7) = {(0, 3), (0, 4), (2, 3), (2, 4), (4, 1), (4, 6), (5, 3), (5, 4),O} .

The inverses are calculated as

(0, 3) = −(0, 4)
(0, 4) = −(0, 3)
(2, 3) = −(2, 4)
(2, 4) = −(2, 3)
(4, 1) = −(4, 6)
(4, 6) = −(4, 1)
(5, 3) = −(5, 4)
(5, 4) = −(5, 3)
O = −O .

(c) #E3(F7) = 9



(d) With group law addition, E3(F7) is a finitie abelian group. It holds ord(P ) | #E(F7)
(Lagrange’s theorem). In this case, it follows for P 6= 0 : 1 < ord(P ) = {3, 9}, i.e., a
point in the group generates a subgroup of either size three or nine. We have to show
that the point (0, 3) does not generate a subgroup of size three. It is then a generator
of the group.

1P = (0, 3)
2P = (0, 3) + (0, 3) = (x, y) = (2, 3)

with

c = 3 · 02 + 3
2 · 3 = 1

2 = 4 mod 7

x = c2 − 2 · 0 = 42 ≡ 2 mod 7
y = c(0− 2)− 3 = −2 · 4− 3 = −11 ≡ 3 mod 7

3P = (2, 3) + (0, 3) =6= O ((2, 3) is not the inverse of (0, 3).)

It follows that (0, 3) is a generator of the group.

(e) A trivial upper bound is 2q + 1. A trivial lower bound is 1. Alternatively, with Hasse,
the bounds become:

q + 1− 2√q ≤ #E(Fq) ≤ q + 1 + 2√q


