Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 3 - Proposed Solution -

Friday, November 13, 2015

Solution of Problem 1

a) Given $x \equiv-x \bmod p$, prove that $x \equiv 0 \bmod p$.

Proof. The inverse of 2 modulo p exists. Then,

$$
\begin{aligned}
& -x \equiv x \quad \bmod p \\
& \Leftrightarrow \quad 0 \equiv 2 x \quad \bmod p \\
& \Leftrightarrow \quad 0 \equiv x \quad \bmod p \text {. }
\end{aligned}
$$

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses $p=q$.
i) Alice calculates $n=p^{2}$ and sends n to Bob.
ii) Bob calculates $c \equiv x^{2} \bmod n$ and sends c to Alice. With high probability $p \nmid x \Leftrightarrow$ $x \not \equiv 0 \bmod p$ (therefore, Bob almost always loses).
iii) The only two solutions $\pm x$ are calculated by Alice (see below) and sent to Bob. Bob cannot factor n, as

$$
\operatorname{gcd}(x-(\pm x), n)=\left\{\begin{array}{l}
\operatorname{gcd}(0, n)=n \\
\operatorname{gcd}(2 x, n)=\operatorname{gcd}\left(2 x, p^{2}\right)=1
\end{array} .\right.
$$

Alice always wins.
c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be accused of cheating. Bob can factor n by calculating $p=\sqrt{n}$ as a real number and win the game.

Note: The two solutions $\pm x$ to $x^{2} \equiv c \bmod p^{2}$ can be calculated as follows.
Let p be an odd prime and $x, y \not \equiv 0 \bmod p$. If $x^{2} \equiv y^{2} \bmod p^{2}$, then $x^{2} \equiv y^{2} \bmod p$, so $x \equiv \pm y \bmod p$.
Let $x \equiv y \bmod p$. Then

$$
x=y+\alpha p .
$$

By squaring we get

$$
\begin{aligned}
& x^{2}=y^{2}+2 \alpha p y+(\alpha p)^{2} \\
\Rightarrow & x^{2} \equiv y^{2}+2 \alpha p y \quad \bmod p^{2} .
\end{aligned}
$$

Since $x^{2} \equiv y^{2} \bmod p^{2}$, we obtain

$$
0=2 \alpha p y \quad \bmod p^{2} .
$$

Divide by p to get

$$
0=2 \alpha y \quad \bmod p
$$

Since p is odd and $p \nmid y$, we must have $p \mid \alpha$. Therefore, $x=y+\alpha p \equiv y \bmod p^{2}$. The case $x \equiv-y \bmod p$ is similar.
In other words, if $x^{2} \equiv y^{2} \bmod p^{2}$, not only $x \equiv \pm y \bmod p$, but also $x \equiv \pm y \bmod p^{2}$. At this point, we have shown that only two solutions exist.
Now, we show how to find $\pm x$, where $x^{2} \equiv c \bmod p^{2}$. As we can find square roots modulo a prime p, we have $x=b$ solves $x^{2} \equiv c \bmod p$. We want $x^{2} \equiv c \bmod p^{2}$. Square $x=b+a p$ to get

$$
\begin{aligned}
b^{2}+2 b a p+(a p)^{2} & \equiv b^{2}+2 b a p \equiv c \quad \bmod p \\
\Rightarrow b^{2} & \equiv c \quad \bmod p
\end{aligned}
$$

Since $b^{2} \equiv c \bmod p$ the number $c-b^{2}$ is a multiple of p, so we can divide by p and get

$$
2 a b \equiv \frac{c-b^{2}}{p} \bmod p
$$

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

$$
a \equiv \frac{c-b^{2}}{p} \cdot 2^{-1} \cdot b^{-1} \quad \bmod p
$$

Therefore, we have $x=b+a p$.
This procedure can be continued to get solutions modulo higher powers of p. It is the numberic-theoretic version of Newton's method for numerically solving equations, and is usually referred to as Hensel's Lemma.
Example: $p=7, p^{2}=49, c=37$. Then

$$
\begin{gathered}
b=c^{\frac{p+1}{4}}=37^{\frac{7+1}{4}}=37^{2} \equiv 4 \quad \bmod p, \\
b^{-1} \equiv 2 \bmod p, 2^{-1} \equiv 4 \bmod p \\
a=\frac{c-b^{2}}{p} \cdot 2^{-1} \cdot b^{-1}=\frac{37-4^{2}}{7} \cdot 4 \cdot 2 \equiv 3 \quad \bmod p \\
x=b+a p=4+3 \cdot 7=25
\end{gathered}
$$

Check: $x^{2}=25^{2} \equiv 37=c \bmod p^{2}$.

Solution of Problem 2

Recall the definition of the Legendre symbol:

$$
\left(\frac{a}{p}\right)= \begin{cases}0 & , a \equiv 0 \quad \bmod p \\ 1 & , a \text { is a quadratic residue modulo } \mathrm{p} \\ -1 & , \text { otherwise }\end{cases}
$$

with $p>2$ prime, $a \in \mathbb{N}$. Also, recall that $c \in \mathbb{Z}_{n}^{*}$ is a quadratic residue modulo n, if $\exists x \in \mathbb{Z}_{n}^{*}: x^{2} \equiv c \bmod n$.
Claim: $\left(\frac{a}{p}\right) \equiv a^{\frac{p-1}{2}} \bmod p$ for $p>2$ prime.
Proof.
(i) $a=0 \Rightarrow a^{\frac{p-1}{2}}=0$
(ii) a is a quadratic residue modulo p. With Eulers criterion and $p>2$ prime:

$$
c \in \mathbb{Z}_{p}^{*} \text { is a quadratic residue modulo } p \Leftrightarrow c^{\frac{p-1}{2}} \equiv 1 \bmod p
$$

(iii) a is a quadratic nonresidue modulo p. If a is a quadratic nonresidue modulo p, then $a^{\frac{p-1}{2}} \equiv-1 \bmod p$ because

$$
\left(a^{\frac{p-1}{2}}\right)^{2} \equiv a^{p-1} \equiv 1 \quad \bmod p
$$

and $a^{\frac{p-1}{2}} \not \equiv 1 \bmod p$.
a) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$ from claim.
b)

$$
\begin{aligned}
\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) & \stackrel{(\text { claim })}{=}\left(a^{\frac{p-1}{2}} \bmod p\right)\left(b^{\frac{p-1}{2}} \bmod p\right) \\
& =(a b)^{\frac{p-1}{2}} \bmod p \\
& \stackrel{\text { (claim) }}{=}\left(\frac{a b}{p}\right)
\end{aligned}
$$

c) Assumption: $a \equiv b \bmod p$.

$$
\begin{aligned}
\left(\frac{a}{p}\right) & =a^{\frac{p-1}{2}} \bmod p \\
& \begin{array}{l}
\text { (Assumption) } \\
b^{\frac{p-1}{2}} \\
\\
\\
\\
=\left(\frac{b}{p}\right)
\end{array} \quad \bmod p
\end{aligned}
$$

Solution of Problem 3

The proof references line numbers. Below is the same version of the algorithm computing the Jacobi symbol as in the script, but with line numbers added.

```
Algorithm 1 Computing the Jacobi (and Legendre) symbol
Input: An odd integer \(n>2\) and an integer \(a, 0 \leq a<n\).
Output: The Jacobi symbol \(\left(\frac{a}{n}\right)\) (and hence the Legendre symbol, when \(n\) is prime)
    procedure \(\operatorname{JACOBI}(a, n)\)
        if \((a=0)\) then
            return 0
        end if
        if \((a=1)\) then
            return 1
        end if
        Write \(a=2^{e} a_{1}\), where \(a_{1}\) is odd
        if \((e\) is even or \(n \equiv 1(\bmod 8)\) or \(n \equiv 7(\bmod 8))\) then
            \(s \leftarrow 1\)
        else
            \(s \leftarrow-1\)
        end if
        if \(\left(n \equiv 3(\bmod 4)\right.\) and \(\left.a_{1} \equiv 3(\bmod 4)\right)\) then
                \(s \leftarrow-s\)
        end if
        \(n_{1} \leftarrow n \bmod a_{1}\)
        if \(\left(a_{1}=1\right)\) then
                return \(s\)
        end if
        return \(s \cdot \mathrm{JACOBI}\left(n_{1}, a_{1}\right)\)
    end procedure
```

Input: odd integer $n>2$, integer $a, 0 \leq a<n$
Lines 2-4: special case $a=0 \Rightarrow\left(\frac{a}{n}\right)=0$.
Lines 5-7: special case $a=1 \Rightarrow\left(\frac{a}{n}\right)=1$.
Line 8: Decomposition of $\left(\frac{a}{n}\right)$

$$
\begin{aligned}
\left(\frac{a}{n}\right) & =\left(\frac{2^{e} a_{1}}{n}\right) \stackrel{\text { Remark } 9.9}{=}\left(\frac{2^{e}}{n}\right)\left(\frac{a_{1}}{n}\right) \quad a_{1}, n \text { are odd } \\
& \stackrel{\text { Hint }}{=} \underbrace{\left(\frac{2^{e}}{n}\right)}_{\substack{\text { line } 9-13 \\
\text { (Note 1) }}} \underbrace{(-1)^{\frac{a_{1}-1}{2} \frac{n-1}{2}}}_{\begin{array}{c}
\text { line 14-16 (Note 2) }
\end{array}} \underbrace{a_{1}}_{\stackrel{a_{1}>2}{=}\left(\frac{n \bmod ^{\text {line } 17-21} \begin{array}{c}
\text { (Note 3) }
\end{array}}{\left(\frac{n}{a_{1}}\right)}\right.})=\left(\frac{n_{1}}{a_{1}}\right)
\end{aligned}
$$

Note 1:

$$
\left(\frac{2^{e}}{n}\right)=\left(\frac{2}{n}\right)^{e} \stackrel{\text { Hint }}{=}\left((-1)^{\frac{n^{2}-1}{8}}\right)^{e}
$$

e even: $\left(\frac{2}{n}\right)^{e}=1$ (line 9-10)
e odd: $\left(\frac{2}{n}\right)^{e}=\left(\frac{2}{n}\right)^{2 k+1}=\left(\frac{2}{n}\right)=(-1)^{\frac{n^{2}-1}{8}}, \quad k \in \mathbb{N}_{0}: e=2 k+1$
Note that $\frac{n^{2}-1}{8}$ is integer as, with $n=2 l+1, l \in \mathbb{N}$,

$$
(2 l+1)^{2}-1=4 l^{2}+4 l+1-1=4 l(l+1) \equiv 0 \quad \bmod 8 .
$$

With $n=8 m+k$, where $m \in \mathbb{N}_{0}, k \in\{1,3,5,7\}$, we can write

$$
\begin{aligned}
\frac{n^{2}-1}{8} & =\frac{(8 m+k)^{2}-1}{8}=\frac{(8 m)^{2}+16 m k+k^{2}-1}{8} \\
& =\frac{16 m(4 m+k)+k^{2}-1}{8}=\underbrace{2 m(4 m+k)}_{\text {even }}+\frac{k^{2}-1}{8},
\end{aligned}
$$

and it follows that

$$
(-1)^{\frac{n^{2}-1}{8}}=(-1)^{\frac{(n \bmod 8)^{2}-1}{8}} .
$$

In other words, we can find all possibile outcomes of $(-1)^{\frac{n^{2}-1}{8}}, n$ odd integer, by looking at $(-1)^{\frac{k^{2}-1}{8}}$ for $k \in\{1,3,5,7\}$.

k	$k^{2}-1$	$\frac{k^{2}-1}{8}$	$\left(\frac{2}{n}\right)=(-1)^{\frac{k^{2}-1}{8}}$	line
1	0	0	1	9,10
3	8	1	-1	11,12
5	24	3	-1	11,12
7	48	6	1	9,10

Note 2:

$$
\begin{gathered}
(-1)^{\frac{a_{1}-1}{2} \frac{n-1}{2}}=-1 \Leftrightarrow \frac{a_{1}-1}{2} \frac{n-1}{2} \text { odd } \Leftrightarrow \frac{a_{1}-1}{2} \wedge \frac{n-1}{2} \text { odd } \\
\Leftrightarrow a_{1} \equiv 3 \quad \bmod 4 \wedge n \equiv 3 \quad \bmod 4 \quad \text { (lines } 14-16 \text {) }
\end{gathered}
$$

Note 3 (line 18f):
If $\left(\frac{a}{n}\right)=\left(\frac{2^{e}}{n}\right)\left(\frac{a_{1}}{n}\right)=\left(\frac{2^{e}}{n}\right)\left(\frac{1}{n}\right)=\left(\frac{2^{e}}{n}\right)$ with $(-1)^{\frac{a_{1}-1}{2} \frac{n-1}{2}}=1 \stackrel{\text { line } 19}{\Rightarrow}\left(\frac{a}{n}\right)=\left(\frac{2^{e}}{n}\right) \cdot 1$. Else $\left(\frac{a}{n}\right)=s \cdot\left(\frac{a_{1}}{n}\right)$.

