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Solution of Problem 1

a) Given x ≡ −x mod p, prove that x ≡ 0 mod p.

Proof. The inverse of 2 modulo p exists. Then,

−x ≡ x mod p

⇔ 0 ≡ 2x mod p

⇔ 0 ≡ x mod p .

b) Looking at the protocol, we can show that Bob always loses to Alice, if she chooses
p = q.

i) Alice calculates n = p2 and sends n to Bob.
ii) Bob calculates c ≡ x2 mod n and sends c to Alice. With high probability p - x⇔

x 6≡ 0 mod p (therefore, Bob almost always loses).
iii) The only two solutions ±x are calculated by Alice (see below) and sent to Bob.

Bob cannot factor n, as

gcd(x− (±x), n) =

gcd(0, n) = n

gcd(2x, n) = gcd(2x, p2) = 1
.

Alice always wins.

c) If Bob asks for the secret key as confirmation, the square is revealed and Alice will be
accused of cheating. Bob can factor n by calculating p =

√
n as a real number and win

the game.

Note: The two solutions ±x to x2 ≡ c mod p2 can be calculated as follows.
Let p be an odd prime and x, y 6≡ 0 mod p. If x2 ≡ y2 mod p2, then x2 ≡ y2 mod p, so
x ≡ ±y mod p.
Let x ≡ y mod p. Then

x = y + αp .



By squaring we get

x2 = y2 + 2αpy + (αp)2

⇒ x2 ≡ y2 + 2αpy mod p2 .

Since x2 ≡ y2 mod p2, we obtain

0 = 2αpy mod p2 .

Divide by p to get
0 = 2αy mod p .

Since p is odd and p - y, we must have p | α. Therefore, x = y + αp ≡ y mod p2. The case
x ≡ −y mod p is similar.
In other words, if x2 ≡ y2 mod p2, not only x ≡ ±y mod p, but also x ≡ ±y mod p2. At
this point, we have shown that only two solutions exist.
Now, we show how to find ±x, where x2 ≡ c mod p2. As we can find square roots modulo a
prime p, we have x = b solves x2 ≡ c mod p. We want x2 ≡ c mod p2. Square x = b+ ap to
get

b2 + 2bap+ (ap)2 ≡ b2 + 2bap ≡ c mod p

⇒ b2 ≡ c mod p .

Since b2 ≡ c mod p the number c− b2 is a multiple of p, so we can divide by p and get

2ab ≡ c− b2

p
mod p .

Multiplying by the multiplicative inverse modulo p of 2 and b, we obtain:

a ≡ c− b2

p
· 2−1 · b−1 mod p .

Therefore, we have x = b+ ap.
This procedure can be continued to get solutions modulo higher powers of p. It is the
numberic-theoretic version of Newton’s method for numerically solving equations, and is
usually referred to as Hensel’s Lemma.
Example: p = 7, p2 = 49, c = 37. Then

b = c
p+1

4 = 37
7+1

4 = 372 ≡ 4 mod p ,

b−1 ≡ 2 mod p , 2−1 ≡ 4 mod p ,

a = c− b2

p
· 2−1 · b−1 = 37− 42

7 · 4 · 2 ≡ 3 mod p

x = b+ ap = 4 + 3 · 7 = 25

Check: x2 = 252 ≡ 37 = c mod p2.



Solution of Problem 2
Recall the definition of the Legendre symbol:

(
a

p

)
=


0 , a ≡ 0 mod p

1 , a is a quadratic residue modulo p
−1 , otherwise

,

with p > 2 prime, a ∈ N. Also, recall that c ∈ Z∗
n is a quadratic residue modulo n, if

∃x ∈ Z∗
n : x2 ≡ c mod n.

Claim:
(

a
p

)
≡ a

p−1
2 mod p for p > 2 prime.

Proof. (i) a = 0⇒ a
p−1

2 = 0

(ii) a is a quadratic residue modulo p. With Eulers criterion and p > 2 prime:

c ∈ Z∗
p is a quadratic residue modulo p⇔ c

p−1
2 ≡ 1 mod p

(iii) a is a quadratic nonresidue modulo p. If a is a quadratic nonresidue modulo p, then
a

p−1
2 ≡ −1 mod p because (

a
p−1

2
)2
≡ ap−1 ≡ 1 mod p

and a p−1
2 6≡ 1 mod p.

a)
(

−1
p

)
= (−1)

p−1
2 from claim.

b) (
a

p

)(
b

p

)
(claim)=

(
a

p−1
2 mod p

) (
b

p−1
2 mod p

)
= (ab)

p−1
2 mod p

(claim)=
(
ab

p

)

c) Assumption: a ≡ b mod p. (
a

p

)
= a

p−1
2 mod p

(Assumption)= b
p−1

2 mod p

=
(
b

p

)



Solution of Problem 3
The proof references line numbers. Below is the same version of the algorithm computing the
Jacobi symbol as in the script, but with line numbers added.

Algorithm 1 Computing the Jacobi (and Legendre) symbol
Input: An odd integer n > 2 and an integer a, 0 ≤ a < n.
Output: The Jacobi symbol

(
a
n

)
(and hence the Legendre symbol, when n is prime)

1: procedure JACOBI(a, n)
2: if (a = 0) then
3: return 0
4: end if
5: if (a = 1) then
6: return 1
7: end if
8: Write a = 2ea1, where a1 is odd
9: if (e is even or n ≡ 1 (mod 8) or n ≡ 7 (mod 8)) then

10: s← 1
11: else
12: s← −1
13: end if
14: if (n ≡ 3 (mod 4) and a1 ≡ 3 (mod 4)) then
15: s← −s
16: end if
17: n1 ← n mod a1
18: if (a1 = 1) then
19: return s
20: end if
21: return s·JACOBI(n1, a1)
22: end procedure

Input: odd integer n > 2, integer a, 0 ≤ a < n
Lines 2-4: special case a = 0⇒

(
a
n

)
= 0.

Lines 5-7: special case a = 1⇒
(

a
n

)
= 1.

Line 8: Decomposition of
(

a
n

)
(
a

n

)
=
(2ea1

n

)
Remark 9.9=

(2e

n

)(
a1

n

)
a1, n are odd

Hint=
(2e

n

)
︸ ︷︷ ︸

line 9−13
(Note 1)

(−1)
a1−1

2
n−1

2︸ ︷︷ ︸
line 14−16
(Note 2)

(
n

a1

)
︸ ︷︷ ︸

a1>2=
(
n mod a1

a1

)
=
(
n1

a1

)
︸ ︷︷ ︸

line 17−21
(Note 3)

=
( 2
n

)e
(
n mod a1

a1

)
(−1)

(a1−1)(n−1)
4

Note 1: (2e

n

)
=
( 2
n

)e
Hint=

(
(−1)

n2−1
8

)e



e even:
(

2
n

)e
= 1 (line 9-10)

e odd:
(

2
n

)e
=
(

2
n

)2k+1
=
(

2
n

)
= (−1)

n2−1
8 , k ∈ N0 : e = 2k + 1

Note that n2−1
8 is integer as, with n = 2l + 1, l ∈ N,

(2l + 1)2 − 1 = 4l2 + 4l + 1− 1 = 4l(l + 1) ≡ 0 mod 8 .

With n = 8m+ k, where m ∈ N0, k ∈ {1, 3, 5, 7}, we can write

n2 − 1
8 = (8m+ k)2 − 1

8 = (8m)2 + 16mk + k2 − 1
8

= 16m(4m+ k) + k2 − 1
8 = 2m(4m+ k)︸ ︷︷ ︸

even

+k
2 − 1
8 ,

and it follows that
(−1)n2−1

8 = (−1)
(n mod 8)2−1

8 .

In other words, we can find all possibile outcomes of (−1)n2−1
8 , n odd integer, by looking at

(−1) k2−1
8 for k ∈ {1, 3, 5, 7}.

k k2 − 1 k2−1
8

(
2
n

)
= (−1)

k2−1
8 line

1 0 0 1 9,10
3 8 1 -1 11,12
5 24 3 -1 11,12
7 48 6 1 9,10

Note 2:
(−1)

a1−1
2

n−1
2 = −1⇔ a1 − 1

2
n− 1

2 odd⇔ a1 − 1
2 ∧ n− 1

2 odd

⇔ a1 ≡ 3 mod 4 ∧ n ≡ 3 mod 4 (lines 14− 16)

Note 3 (line 18f):
If
(

a
n

)
=
(

2e

n

) (
a1
n

)
=
(

2e

n

) (
1
n

)
=
(

2e

n

)
with (−1)

a1−1
2

n−1
2 = 1 line 19⇒

(
a
n

)
=
(

2e

n

)
· 1. Else(

a
n

)
= s ·

(
a1
n

)
.


