Tutorial 5
 - Proposed Solution -

Friday, November 27, 2015

Solution of Problem 1

a) With a block cipher $E_{K}(x)$ with block length k, the message is split into blocks m_{i} of length k each, $m=\left(m_{0}, \ldots, m_{n-1}\right)$. Take $m=\left(m_{0}\right)$ and $\hat{m}=\left(m_{0}, m_{1}, m_{1}\right)$ with m_{0}, m_{1} arbitrary. Then,

$$
h(\hat{m})=E_{m_{0}}\left(m_{0}\right) \oplus \underbrace{E_{m_{0}}\left(m_{1}\right) \oplus E_{m_{0}}\left(m_{1}\right)}_{=0}=E_{m_{0}}\left(m_{0}\right)=h(m) .
$$

Thus, h is neither second preimage resistant nor collision free.
Given $y \in \mathcal{Y}$, choose m_{0}. Then calculate

$$
\begin{aligned}
c & =E_{m_{0}}\left(m_{0}\right) \\
m_{1} & =D_{m_{0}}(c \oplus y) .
\end{aligned}
$$

It follows that

$$
h\left(m_{0}, m_{1}\right)=E_{m_{0}}\left(m_{0}\right) \oplus E_{m_{0}}\left(D_{m_{0}}(c \oplus y)\right)=c \oplus c \oplus y=y .
$$

Hence, h is not preimage resistant, either.
b) \hat{h} replaces $\operatorname{XOR}(\oplus)$ by AND (\odot) and remains the same as h otherwise. Take $m=\left(m_{1}, m_{1}\right)$, with m_{1} chosen arbitraryly. Then,

$$
\hat{h}=E_{m_{1}}\left(m_{1}\right) \odot E_{m_{1}}\left(m_{1}\right)=E_{m_{1}}\left(m_{1}\right)=\hat{h}\left(\left(m_{1}\right)\right) .
$$

\hat{h} is neither second preimage resistant nor collision free.

Solution of Problem 2

Recall Example 10.2: Select q prime, such that $p=2 q+1$ is also prime (Sophie-Germainprimes). Chose a, b as primitive elements modulo p. A message $m=x_{0}+x_{1} \cdot q$, with $0 \leq x_{0}, x_{1} \leq q-1$ is then hashed as

$$
h(m)=a^{x_{0}} b^{x_{1}} \quad \bmod p
$$

This function is slow but collision free.
Claim. If $m \neq m^{\prime}$ and $h(m)=h^{\prime}(m)$, then $k=\log _{a}(b) \bmod p$ can be determined.
In other words, we show that if $m \neq m^{\prime}$ with $h(m)=h^{\prime}(m)$ are known, the discrete logarithm $k=\log _{a}(b) \bmod p$ can be determined, which is known to be computationally infeasable. I.e., it is infeasable to find $m \neq m^{\prime}$ with $h(m)=h^{\prime}(m)$.

Proof. (proof by contradiction) Let $m=x_{0}+x_{1} \cdot q, m^{\prime}=x_{0}^{\prime}+x_{1}^{\prime} \cdot q$.

$$
\begin{array}{rlrl}
& & h(m) & =h^{\prime}(m) \\
& & \\
\Leftrightarrow & a^{x_{0}} b^{x_{1}} & \equiv a^{x_{0}^{\prime}} b^{x_{1}^{\prime}} & \\
\bmod p \\
\Leftrightarrow & a^{x_{0}} a^{k x_{1}} & \equiv a^{x_{0}^{\prime}} a^{k x_{1}^{\prime}} & \\
\bmod p \\
\Leftrightarrow & a^{k\left(x_{1}-x_{1}^{\prime}\right)-\left(x_{0}^{\prime}-x_{0}\right)} & \equiv 1 & \\
\bmod p
\end{array}
$$

Since a is a primitive element modulo p,

$$
\begin{array}{lll}
& k\left(x_{1}-x_{1}^{\prime}\right)-\left(x_{0}^{\prime}-x_{0}\right) \equiv 0 & \\
\Leftrightarrow & k\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} & \\
\bmod (p-1) \\
\hline
\end{array}
$$

As $m \neq m^{\prime}$, it holds that $x_{1}-x_{1}^{\prime} \not \equiv 0 \bmod (p-1)$. Show that $k=\log _{a}(b) \bmod p$ can be efficiently computed. Assume $1 \leq k, k^{\prime} \leq p-1$ fulfill (\star). Then,

$$
\begin{gathered}
k\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} \bmod (p-1) \wedge k^{\prime}\left(x_{1}-x_{1}^{\prime}\right) \equiv x_{0}^{\prime}-x_{0} \bmod (p-1) \\
\Rightarrow\left(k-k^{\prime}\right)\left(x_{1}-x_{1}^{\prime}\right) \equiv 0 \bmod (p-1)
\end{gathered}
$$

It holds $-(p-2) \leq k-k^{\prime} \leq p-2$ and $x_{1} \neq x_{1}^{\prime}$ and $-(q-1) \leq x_{1}-x_{1}^{\prime} \leq q-1$. Let $d=\operatorname{gcd}\left(x_{1}-x_{1}^{\prime}, p-1\right)$, then, with $(\star), d \mid x_{0}^{\prime}-x_{0}$.
(i) $d=1: k-k^{\prime} \equiv 0 \bmod (p-1) \Leftrightarrow k=k^{\prime} \bmod (p-1)$ has one solution for $1 \leq k, k^{\prime} \leq p-1$.
(ii) $d>1$: With $(*)$

$$
k\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right) \equiv \frac{x_{0}^{\prime}-x_{0}}{d} \quad \bmod \left(\frac{p-1}{d}\right)
$$

It holds $\operatorname{gcd}\left(\frac{x_{1}-x_{1}^{\prime}}{d}, \frac{p-1}{d}\right)=1$. With (i), it follows that $(\star \star)$ has exactly one solution k_{0}, which can be determined by using the Extended Euclidean algorithm as in (i).

$$
\begin{aligned}
& r\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right)+s\left(\frac{p-1}{d}\right)=1 \\
\Rightarrow & \underbrace{r}_{k_{0}}\left(\frac{x_{1}-x_{1}^{\prime}}{d}\right) \equiv \frac{x_{0}^{\prime}-x_{0}}{d} \quad \bmod \frac{p-1}{d}
\end{aligned}
$$

Recall $p-1=2 q \Rightarrow d \in\{1,2, q, 2 q\} \Rightarrow d \in 1,2$ as $\left(x_{1}-x_{1}^{\prime}\right) \leq q-1$. Check, if $a^{k_{0}} \underbrace{\left[\text { or } a^{k_{0}+\frac{p-1}{2}}\right]}_{d=2 \text { analogously }} \equiv b \bmod p$.

Solution of Problem 3

a) Having the following expression:

$$
h:\{0,1\}^{*} \rightarrow\{0,1\}^{*}, k \mapsto\left(\left\lfloor 10000\left((k)_{10}(1+\sqrt{5}) / 2-\left\lfloor(k)_{10}(1+\sqrt{5}) / 2\right\rfloor\right)\right\rfloor\right)_{2} .
$$

We want to obtain the upper bound in terms of bit length. Therefore, we will analyze the expression:

$$
\alpha=\left((k)_{10}(1+\sqrt{5}) / 2-\left\lfloor(k)_{10}(1+\sqrt{5}) / 2\right\rfloor\right)<1
$$

but it can be arbitrary close to 1
Hence now the expression is simpler and we can obtain the upper bound:

$$
10000(\alpha)<10000 \leq 9999
$$

Now applying the logarithm, we obtain the bit length:

$$
\log _{2}(9999) \approx 13.288 \leq 14
$$

b) We search for a collision:

$$
\begin{gathered}
k=1 \longrightarrow(1+\sqrt{5}) / 2=1.6180 \\
\longrightarrow(k)_{10}(1+\sqrt{5}) / 2-\left\lfloor(k)_{10}(1+\sqrt{5}) / 2\right\rfloor=0.6180
\end{gathered}
$$

Therefore, we need to search for a value x, s.t:

$$
x(1+\sqrt{5}) / 2=a+0.6180+b
$$

with $\mathrm{a} \in \mathbb{Z}, \mathrm{b}<0.0001$
We create a while loop to obtain the value for the collision:

$$
x=2
$$

while $(0.618>x((1+\sqrt{5}) / 2)-\lfloor x(1+\sqrt{5}) / 2\rfloor>0.618+0.0001)$ do $x=x+1$
end while
Obtaining a value of $k=10947$, where

$$
\begin{gathered}
(h(1))_{10}=6180 \\
(h(10947))_{10}=6180
\end{gathered}
$$

since the values are equal, we obtain a collision.

