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Solution of Problem 1

a) With a block cipher EK(x) with block length k, the message is split into blocks mi

of length k each, m = (m0, . . . ,mn−1). Take m = (m0) and m̂ = (m0,m1,m1) with
m0,m1 arbitrary. Then,

h(m̂) = Em0(m0)⊕ Em0(m1)⊕ Em0(m1)︸ ︷︷ ︸
=0

= Em0(m0) = h(m) .

Thus, h is neither second preimage resistant nor collision free.
Given y ∈ Y , choose m0. Then calculate

c = Em0(m0) ,
m1 = Dm0(c⊕ y) .

It follows that

h(m0,m1) = Em0(m0)⊕ Em0(Dm0(c⊕ y)) = c⊕ c⊕ y = y .

Hence, h is not preimage resistant, either.

b) ĥ replaces XOR (⊕) by AND (�) and remains the same as h otherwise. Take
m = (m1,m1), with m1 chosen arbitraryly. Then,

ĥ = Em1(m1)� Em1(m1) = Em1(m1) = ĥ((m1)) .

ĥ is neither second preimage resistant nor collision free.



Solution of Problem 2
Recall Example 10.2: Select q prime, such that p = 2q + 1 is also prime (Sophie-Germain-
primes). Chose a, b as primitive elements modulo p. A message m = x0 + x1 · q, with
0 ≤ x0, x1 ≤ q − 1 is then hashed as

h(m) = ax0bx1 mod p .

This function is slow but collision free.
Claim. If m 6= m′ and h(m) = h′(m), then k = loga(b) mod p can be determined.
In other words, we show that if m 6= m′ with h(m) = h′(m) are known, the discrete
logarithm k = loga(b) mod p can be determined, which is known to be computationally
infeasable. I.e., it is infeasable to find m 6= m′ with h(m) = h′(m).

Proof. (proof by contradiction) Let m = x0 + x1 · q, m′ = x′0 + x′1 · q.

h(m) = h′(m)
⇔ ax0bx1 ≡ ax′0bx′1 mod p

⇔ ax0akx1 ≡ ax′0akx′1 mod p

⇔ ak(x1−x′1)−(x′0−x0) ≡ 1 mod p

Since a is a primitive element modulo p,

k(x1 − x′1)− (x′0 − x0) ≡ 0 mod (p− 1)
⇔ k(x1 − x′1) ≡ x′0 − x0 mod (p− 1) . (?)

As m 6= m′, it holds that x1 − x′1 6≡ 0 mod (p− 1). Show that k = loga(b) mod p can be
efficiently computed. Assume 1 ≤ k, k′ ≤ p− 1 fulfill (?). Then,

k(x1 − x′1) ≡ x′0 − x0 mod (p− 1) ∧ k′(x1 − x′1) ≡ x′0 − x0 mod (p− 1)
⇒ (k − k′)(x1 − x′1) ≡ 0 mod (p− 1) .

It holds −(p − 2) ≤ k − k′ ≤ p − 2 and x1 6= x′1 and −(q − 1) ≤ x1 − x′1 ≤ q − 1. Let
d = gcd(x1 − x′1, p− 1), then, with (?), d | x′0 − x0.

(i) d = 1: k − k′ ≡ 0 mod (p − 1) ⇔ k = k′ mod (p − 1) has one solution for
1 ≤ k, k′ ≤ p− 1.

(ii) d > 1: With (?)
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= 1. With (i), it follows that (??) has exactly one solution

k0, which can be determined by using the Extended Euclidean algorithm as in (i).
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Recall p − 1 = 2q ⇒ d ∈ {1, 2, q, 2q} ⇒ d ∈ 1, 2 as (x1 − x′1) ≤ q − 1. Check, if
ak0

[
or ak0+ p−1

2
]

︸ ︷︷ ︸
d=2 analogously

≡ b mod p.

Solution of Problem 3

a) Having the following expression:

h : {0, 1}∗ → {0, 1}∗, k 7→
(⌊

10000
(

(k)10(1 +
√

5)/2−
⌊
(k)10(1 +

√
5)/2

⌋)⌋)
2
.

We want to obtain the upper bound in terms of bit length. Therefore, we will analyze
the expression:

α =
(

(k)10(1 +
√

5)/2−
⌊
(k)10(1 +

√
5)/2

⌋)
< 1

but it can be arbitrary close to 1
Hence now the expression is simpler and we can obtain the upper bound:

10000 (α) < 10000 ≤ 9999
Now applying the logarithm, we obtain the bit length:

log2(9999) ≈ 13.288 ≤ 14

b) We search for a collision:

k = 1 −→ (1 +
√

5)/2 = 1.6180
−→ (k)10(1 +

√
5)/2−

⌊
(k)10(1 +

√
5)/2

⌋
= 0.6180

Therefore, we need to search for a value x, s.t:
x(1 +

√
5)/2 = a+ 0.6180 + b

with a∈ Z, b < 0.0001
We create a while loop to obtain the value for the collision:
x = 2

while (0.618 > x((1 +
√

5)/2)−
⌊
x(1 +

√
5)/2

⌋
> 0.618 + 0.0001) do

x = x+ 1
end while

Obtaining a value of k = 10947, where
(h(1))10 = 6180

(h(10947))10 = 6180

since the values are equal, we obtain a collision.


