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Solution of Problem 1

a) With a block cipher E(z) with block length k, the message is split into blocks m;
of length k each, m = (myg,...,m,_1). Take m = (mg) and m = (mg, my, my) with
mg, my arbitrary. Then,

W) = By (m0) © Enmg(m1) © Emg(ma) = Enq(mo) = h(m) .

=0

Thus, h is neither second preimage resistant nor collision free.

Given y € Y, choose mg. Then calculate

¢ = En,(mo),
my = Dy, (c®y).

It follows that
h(mg,m1) = Epy(mo) ® Epg (D (cBy)) =cdedy=y.
Hence, h is not preimage resistant, either.

b) h replaces XOR (&) by AND (©) and remains the same as h otherwise. Take
m = (mq, my), with m; chosen arbitraryly. Then,

h = B, (m1) @ By (m1) = B, (m1) = h((m1)).

h is neither second preimage resistant nor collision free.



Solution of Problem 2

Recall Example 10.2: Select ¢ prime, such that p = 2¢ + 1 is also prime (Sophie-Germain-
primes). Chose a,b as primitive elements modulo p. A message m = x¢ + x;1 - ¢, with
0 < xp,r1 < q—1is then hashed as

h(m) = a®™b™ mod p.

This function is slow but collision free.
Claim. If m # m’ and h(m) = h'(m), then k = log,(b) mod p can be determined.

In other words, we show that if m # m' with h(m) = h/(m) are known, the discrete
logarithm k = log,(b) mod p can be determined, which is known to be computationally
infeasable. L.e., it is infeasable to find m # m’ with h(m) = h'(m).

Proof. (proof by contradiction) Let m = xg + x1 - ¢, m' = z{ + 2 - q.

h(m) = h'(m
& a™b" = g%b*™  mod p
= a™a" = 0" mod p
& gFemT)=@—e0) = mod p
Since a is a primitive element modulo p,
k(zy —2)) — (25— x9) =0 mod (p — 1)
& k(xy —2)) =xy —x9p mod (p—1). (%)

As m # m/, it holds that 1 — 2] Z 0 mod (p — 1). Show that £ =log,(b) mod p can be
efficiently computed. Assume 1 < k, k' < p — 1 fulfill (x). Then,

k(ry —2))=xy—19 mod (p—1) A K(x;—2))=25—29 mod (p—1)
= (k—K)(z,—2))=0 mod (p—1).

It holds —(p—2) <k—kK <p—2and z; # 2} and —(¢ — 1) < x; — 2] < ¢g—1. Let
d = ged(xy — 2, p — 1), then, with (%), d | z{ — .

(i)d =1 k—kK =0 mod (p—1) & k = k' mod (p — 1) has one solution for
1<k K <p-1.
(i) d > 1: With (%)
! /I _ 1
k<xldxl>5%dxo mod (£5°) b
It holds ged (wlgmll , %) = 1. With (i), it follows that (xx) has exactly one solution

ko, which can be determined by using the Extended Euclidean algorithm as in (i).

xry — ) (p—l)
_ — =1
7‘( p >+s d

x — h —x —1
= r (1 1) 0 0 mod 22

~~ d d d

ko



Recall p—1=2¢ = d € {1,2,¢,2q} = d € 1,2 as (x; — 2}) < ¢ — 1. Check, if

alo [or ak(’#%l] =b mod p.

—_——
d=2 analogously

Solution of Problem 3

a)

b)

Having the following expression:
he {01} = {0,1}*, k ({10000((%;)10(1 +V5)/2 = | (k)10(1+ \/3)/2J>J>2.

We want to obtain the upper bound in terms of bit length. Therefore, we will analyze
the expression:

a = (o1 + VB)/2 = |1+ VB)/2]) <1
but it can be arbitrary close to 1
Hence now the expression is simpler and we can obtain the upper bound:
10000 (a) < 10000 < 9999

Now applying the logarithm, we obtain the bit length:
10g2(9999) ~ 13.288 < 14

We search for a collision:

k=1-— (14++5)/2=1.6180
— (k)10(1 + v5)/2 = | (k)10 (1 + V5) /2] = 0.6180
Therefore, we need to search for a value x, s.t:
2(1+v5)/2 = a+0.6180 + b

with a€ Z, b < 0.0001
We create a while loop to obtain the value for the collision:
=2
while (0.618 > z((1+v/5)/2) — |2(1 + v/5)/2| > 0.618 4 0.0001) do
r=xz+1
end while

Obtaining a value of k = 10947, where
(h(1))10 = 6180
(h(10947))19 = 6180

since the values are equal, we obtain a collision.



