
Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 6
- Proposed Solution -

Friday, December 4, 2015

Solution of Problem 1
Recall the RSA cryptosystem: n = pq, p 6= q prime and e ∈ Zϕ(n) with gcd(e, ϕ(n)) = 1.
The public key is (n, e).
Our pseudo-random generator based on RSA is:

a) Select a random seed x0 ∈ {2, . . . , n− 1}.

b) Iterate: xi+1 ≡ xe
i mod n, i = 0, . . . , t.

c) Let bi denote the last h bits of xi, where h = blog2blog2(n)cc.

d) Return the pseudo-random sequence b1, . . . , bt of h · t pseudo-random bits.

Solution of Problem 2
Given: two hash functions with output length of 64 bits and 128 bits.

a) How many messages have to be created, such that the probability of a collision
exceeds 0.86?
Birthday paradox: k objects, n bins, pk,n, the probability of “no collision”, is bounded
by

pk,n ≤ exp
(
−k(k − 1)

2n

)

⇒ 1− pk,n ≥ 1− exp
(
−k(k − 1)

2n

)
≥ p

⇔ exp
(
−k(k − 1)

2n

)
≤ 1− p

⇔ k2 − k + 2n loge (1− p)

=
(

k − 1
2 + 1

2
√

1− 8n loge (1− p)
)
·
(

k − 1
2 −

1
2
√

1− 8n loge (1− p)
)
≥ 0

With n = 264 ≈ 1.844 · 1019 and p = 0.86, we get k64 ≈ 8.517 · 109, and with
n = 2128 ≈ 3.403 · 1038, we get k128 ≈ 3.658 · 1019, where k64 and k128 denote the
number of messages needed to get a collision with probability of p = 0.86.



b) The following solution is an example and other solutions are possible. The main
aspect of this exercise is to show the growth in resources for generating collisions the
longer the hash function is.

Hardware resource 64 bit hash function 128 bit hash function
hash function executions k64 = 8.517 · 109 k128 = 3.658 · 1019

memory size k64 · 64 bits ≈ 63.5GiB k128 · 128 bits = 5.45 · 1011GiB
comparisons 0 + 1 + 2 + . . . + (k64 − 1) 1

2k128 (k128 − 1) ≈ 6.69 · 1038

= ∑k64−1
i=0 i = 1

2k64 (k64 − 1)
≈ 3.63 · 1019

Solution of Problem 3

Ci = Mi+1 ⊕ EK(Ci−1), i = 1, . . . , n− 1 (1)
MAC(n)

K = EK(Cn−1) (2)
C0 = M1 (3)
Ĉi = EK(Ĉi−1 ⊕Mi), i = 1, . . . , n− 1 (4)

M̂AC
(n)
K = EK(Ĉn−1 ⊕Mn) (5)
Ĉ0 = 0 (6)

We show that the equivalency

MAC(n)
K = M̂AC

(n)
K (7)

holds, by induction over n.

Proof. n = 1:

MAC(1)
K

(2)= EK(C0)
(3)= EK(M1)

(6)= EK(Ĉ0 ⊕M1)
(5)= M̂AC

(1)
K

n→ n + 1:

MAC(n+1)
K

(2)= EK(Cn) (1)= EK(Mn+1 ⊕ EK(Cn−1))
(2)= EK

(
Mn+1 ⊕MAC(n)

K

)
(7)= EK

(
Mn+1 ⊕ M̂AC

(n)
K

)
(5)= EK

(
Mn+1 ⊕ EK

(
Ĉn−1 ⊕Mn

))
(4)= EK

(
Mn+1 ⊕ Ĉn

) (4)= Ĉn+1 = M̂AC
(n+1)
K



Solution of Problem 4

a) Alice sends to Bob:
c = e(m ‖ h(k2 ‖ m), k1) .

Bob validates as follows:

• d(c, k1) = m′ ‖ h(k2 ‖ m)
• compute h(k2 ‖ m′) with the known key k2

• verify h(k2 ‖ m) = h(k2 ‖ m′)

Background:

• two keys are use to separate encryption and validation
• e.g., two keys can have different security levels
• encryption can be omitted if the message is not secret, but integrity is still

ensured
• if a part of the key is lost, then the system is not entirely broken

b) Method (i): Let both, (K1, L1) and (K2, L2) belong to Bob.
First, Alice sends the following to Bob:

c = e(m ‖ h(s ‖ m) ‖ e(s, K2), K1) .

Then, Bob validates:

• d(c, L1) = m ‖ h(s ‖ m) ‖ e(s, K2)
• d(e(s, K2), L2) = s

• compute h(s ‖ m′) with session key s

• verify h(s ‖ m) = h(s ‖ m′).

Method (ii): Let (KA, LA) belong to Alice and (KB, LB) belong to Bob, then a
possible protocol for message validation is.

• Bob sends to Alice: c1 = e(s, KA)
• Alice calculates: d(c1, LA) = s

• Alice then sends to Bob: c2 = e(m ‖ h(s ‖ m), KB)
• Bob calculates d(c2, LB) = m ‖ h(s ‖ m), computes h(s ‖ m′) with session key

s, and verifies that h(s ‖ m) = h(s ‖ m′).

There are many more protocols possible.

c) There is no authentication for Alice and Bob. Eve can easily impersonate Alice:
Eve sends the following c to Bob using Bob’s public key:

c = e(m̃ ‖ h(s ‖ m̃) ‖ e(s, K2), K1)



with her own forged message m̃ impersonating Alice. Bob does not know that this
message is actually from Eve.
To counteract this attack, the message must be securely linked to Bob’s identity.
This demand can be accomplished by a signature. For instance:

c = e(m ‖ sigA(m) ‖ h(s ‖ sigA(m) ‖ e(s, K2), K1).


