Tutorial 8 - Proposed Solution -

Friday, January 8, 2016

Solution of Problem 1

We have a generator $a \equiv g^{\frac{p-1}{q}} \bmod p$, with $g \in \mathbb{Z}_{p}^{*}, q \mid p-1, p, q$ prime and $a \neq 1$. By definition of the order of a group, we know that:

$$
a^{\operatorname{ord}_{p}(a)} \equiv 1 \quad \bmod p .
$$

Recall: $\operatorname{ord}_{p}(a)=\min \left\{k \in\{1, \ldots, \varphi(p)\} \mid a^{k} \equiv 1 \bmod p\right\}$. With $a \neq 1 \rightarrow \operatorname{ord}_{p}(a)>1$. Next, we compute a^{q} and substitute $g^{\frac{p-1}{q}}$:

$$
a^{q} \equiv\left(g^{\frac{p-1}{q}}\right)^{q} \equiv g^{p-1} \stackrel{\text { Fermat }}{\equiv} 1 \quad \bmod p .
$$

From this we obtain $1<\operatorname{ord}_{p}(a) \leq q$.
Yet to show: Does a $k \in \mathbb{Z}$ with $k<q$ exist so that k is the order of the group?
This is a proof by contradiction.
Assume the subgroup has indeed $k=\operatorname{ord}_{p}(a)<q$, i.e., $\exists k<q: k=\operatorname{ord}_{p}(a)$. Then:

$$
\begin{aligned}
a^{q} & \equiv a^{l k+r}, l \in \mathbb{Z}, r<k, \\
& \equiv a^{r} \\
& \xlongequal{!} 1 \bmod p .
\end{aligned}
$$

We distinguish two possible cases:

- $\operatorname{ord}_{p}(a) \nmid q \Rightarrow a^{r} \equiv 1 \bmod p$, with $1<r<\operatorname{ord}_{p}(a) \nless\left(\operatorname{Def.}\right.$ of $\left.\operatorname{ord}_{p}(a)\right)$
- $\operatorname{ord}_{p}(a) \mid q \Rightarrow a^{0} \equiv 1 \bmod p \checkmark$

Since q is prime $\Rightarrow \operatorname{ord}_{p}(a) \mid q$ there are only two divisors of q, namely 1 and q :

- $\operatorname{ord}_{p}(a)=1 \nmid$ (since $a \neq 1$ is assumed)
- $\operatorname{org}_{p}(a)=q$ $\operatorname{ord}^{2}($ We obtain $k=q$ and not the demanded $k<q)$

The cyclic subgroup has order q in \mathbb{Z}_{p}^{*}, if a is chosen according to the algorithm.

Solution of Problem 2

Choose a pair $(\tilde{u}, \tilde{v}) \in \mathbb{Z} \times \mathbb{Z}$ such that $\operatorname{gcd}(\tilde{v}, q)=1$, so that \tilde{v} is invertible modulo q. The forged signature is constructed by:

$$
\begin{aligned}
r & \equiv\left(a^{\tilde{u}} y^{\tilde{v}} \quad \bmod p\right) \quad \bmod q, \\
s & \equiv r \tilde{v}^{-1} \quad \bmod q
\end{aligned}
$$

Then (r, s) is a valid signature for the message $m=s \tilde{u} \bmod q$.
Check verification procedure of the DSA:

1. Check $0<r<q, 0<s<q$. \checkmark (due to modulo q)
2. Compute $w \equiv s^{-1} \bmod q$.
3. In this step, no hash-function is used by the given assumption, i.e., $h(m)=m$:

$$
u_{1} \equiv w m \equiv s^{-1} s \tilde{u} \equiv \tilde{u} \bmod q,
$$

$$
u_{2} \equiv r w \equiv r s^{-1} \bmod q .
$$

4. $v=a^{u_{1}} y^{u_{2}} \equiv a^{\tilde{u}+x r s^{-1}} \equiv a^{\tilde{u}+\tilde{v} x} \equiv a^{\tilde{u}}\left(a^{x}\right)^{\tilde{v}} \equiv\left(a^{\tilde{u}} y^{\tilde{v}} \bmod p\right) \bmod q$.
5. The forged DSA signature is valid, since $v=r$ holds.

Solution of Problem 3

a) We demand the following conditions on the two prime parameters p and q :
i) $2^{159}<q<2^{160}$,
ii) $2^{1023}<p<2^{1024}$,
iii) $q \mid p-1$.

We use a stepwise approach going through i), ii), and iii).
Our suggested algorithm to find a pair of primes p and q is:

1) Get a random odd number q with $2^{159}<q<2^{160}$.
2) Repeat step 1) if q is not prime. (e.g., use the Miller-Rabin Primality Test)
3) Get a random even number k with $\left\lceil\frac{2^{1023}-1}{q}\right\rceil<k<\left\lfloor\frac{2^{1024}-1}{q}\right\rfloor$ and set $p=k q+1$.
4) If p is not prime, repeat step 3).

Check if the algorithm finds a correct pair of primes p, q according to i), ii), and iii):

- With step 1), $2^{159}<q<2^{160}$ holds, as demanded in i).
- Due to step 2), q is prime.
- Due to step 3), it holds:

$$
\begin{aligned}
& p=k q+1 \stackrel{i i)}{>}\left\lceil\frac{2^{1023}-1}{q}\right\rceil q+1 \geq 2^{1023}, \\
& p=k q+1 \stackrel{i i)}{<}\left\lfloor\frac{2^{1024}-1}{q}\right\rfloor q+1 \leq 2^{1024}
\end{aligned}
$$

and therefore $2^{1023}<p<2^{1024}$ holds, as demanded in ii). \checkmark

- Step 3) also provides $p=k q+1 \Leftrightarrow q \mid p-1$, as demanded in iii). An even k ensures that p is an odd number.
- Step 4) provides that p is also prime.

Altogether, the proposed algorithm works.
b) In steps 2) and 4), a primality test is chosen (here: Miller-Rabin Primality Test), such that the error probability for a composite q is negligible.
The success probability of finding a prime of size x is about $\frac{1}{\ln (x)}$. (cf. hint)
If even numbers (these are obviously not prime) are skipped, the success probability doubles. The success probability of finding a single prime is estimated by:

$$
p_{\text {succ }, p} \approx 2 \cdot \frac{\mid\{p \in \mathbb{Z} \mid p \leq n, p \text { prime }\} \mid}{n} .
$$

The combined probability of success for a pair of primes p and q is approximately:

$$
=\frac{2}{\ln \left(2^{160}\right)} \cdot \frac{2}{\ln \left(2^{1024}\right)}=\frac{1}{80 \cdot 512 \cdot \ln (2)^{2}} \approx 5.08 \cdot 10^{-5} .
$$

