Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

# Tutorial 10 <br> - Proposed Solution - 

Friday, January 22, 2016

## Solution of Problem 1

Useful sources to study the Kerberos protocol are, e.g.:

- Trappe, Washington - Introduction to Cryptography with Coding theory (Chapter 13)
- http://en.wikipedia.org/wiki/Kerberos_(protocol)

Unilateral authentication by the Kerberos protocol with a ticket granting server:

1. User logon, $A$ requests client authentication at $T$ to use $G$ :
$A \rightarrow T: A, G$
2. $T$ grants client authentication for $A$ at $G$ :
$T$ generates session key $k_{A G}$.
$T$ generates a ticket granting ticket $(T G T): T G T=G, E_{k_{T G}}\left(A, t_{1}, l_{1}, k_{A G}\right)$.
$T \rightarrow A: E_{k_{A T}}\left(k_{A G}\right), T G T$
3. A requests client authentication for service at $G$ :
$A$ recovers $k_{A G}$ using the shared key $k_{A T}$.
$A$ generates an authenticator $a_{A G}=E_{k_{A G}}\left(A, t_{2}\right)$.
$A \rightarrow G: a_{A G}, T G T$
4. $G$ grants service to $A$ :
$G$ recovers $A, t_{1}, l_{1}, k_{A G}$ from the $T G T$ using $k_{T G}$.
$G$ recovers $A, t_{2}$ from $a_{A G}$ using $k_{A G}$.
$G$ checks if the time stamp is within the validity period $\left(t_{2}-t_{1}\right)<l_{1}$.
$G$ verifies $A$ if authenticator and the ticket are correct.
$G$ generates session key $k_{A B}$ and service ticket $S T$ using $k_{B G}: S T=E_{k_{B G}}\left(A, t_{3}, l_{2}, k_{A B}\right)$.
$G \rightarrow A: S T, E_{k_{A G}}\left(k_{A B}\right)$
5. A communicates with $B$ with the authenticated service of $G$ :
$A$ recovers $k_{A B}$ using $k_{A G}$.
$A$ generates authenticator $a_{A B}=E_{k_{A B}}\left(A, t_{4}\right)$.
$A \rightarrow B: a_{A B}, S T$
$B$ recovers $A, t_{3}, l_{2}, k_{A B}$ from $S T$ using $k_{B G}$.
$B$ recovers $A$ and $t_{4}$ from $a_{A B}$ using $k_{A B}$.
$B$ checks if the time stamp is within the validity period $\left(t_{4}-t_{3}\right)<l_{2}$.
$B$ verifies $A$ if authenticator and service ticket are correct.
Then, $A$ is successfully authenticated to $B$.

## Solution of Problem 2

Parameters: $n=p q$ with $p, q \equiv 3 \bmod 4$, and $p, q$ secret primes.
Each user chooses an arbitrary sequence of seeds $s_{1}, \ldots s_{K} \in\{1, \ldots, n-1\}$, with $\operatorname{gcd}\left(s_{i}, n\right)=1$ and publishes: $v_{i}=\left(s_{i}^{2}\right)^{-1} \bmod n$.
A public hash function is applied:

$$
H:\{0,1\}^{*} \rightarrow\left\{\left(b_{1}, \ldots, b_{K}\right) \mid b_{i} \in\{0,1\}\right\}
$$

Signature generation:
(i) A chooses an arbitrary value $r \in\{1, \ldots, n-1\}$ and calculates $x \equiv r^{2} \bmod n$. (witness)
(ii) A calculates: $h(m, x)=\left(b_{1}, \ldots, b_{k}\right)$ (challenge) and afterwards $y \equiv r \prod_{j=1}^{K} s_{j}^{b_{j}} \bmod n($ response)
(iii) The signature of $m$ is $(x, y)$ :
$A \rightarrow B: m, x, y$
Verification:
(i) B calculates $h(m, x)=\left(b_{1}, \ldots, b_{K}\right)$. (challenge)
(ii) B calculates $z \equiv y^{2} \prod_{j=1}^{K} v_{j}^{b_{j}} \bmod n$. (response)
(iii) B accepts the signature if $z=x$ holds.

Proof that this signature and verification scheme is correct:

$$
z=y^{2} \prod_{j=1}^{K} v_{j}^{b_{j}} \equiv \underbrace{r^{2}}_{\equiv x} \underbrace{\prod_{j=1}^{K} s_{j}^{2 b_{j}} \prod_{j=1}^{K} v_{j}^{b_{j}}}_{\equiv 1} \equiv x \bmod n .
$$

## Solution of Problem 3

a) The secret service (MI5) chooses an arbitrary seed $s \in \mathbb{Z}_{n}$ per iteration.

The MI5 calculates the quadratic residue $y \equiv s^{2} \bmod n$ :

$$
\text { MI5 } \rightarrow \text { JB: } y
$$

JB calculates the four square roots of $y$ modulo $n$ using the factors $p, q$ of $n$. JB chooses a square root $x$ :

$$
\text { JB } \rightarrow \text { MI5: } x
$$

The MI5 verifies that $x^{2} \equiv y \bmod n$.
Since JB has no information about $s$, he chooses the $x$ with probability $\frac{1}{2}$, such that $x \not \equiv \pm s \bmod n$.
If the MI5 receives such an $x, n$ can be factorized:

$$
\begin{aligned}
y \equiv s^{2} & \equiv x^{2} \quad \bmod n \\
\Rightarrow s^{2}-x^{2} & \equiv 0 \quad \bmod n \\
\Rightarrow(s-x)(s+x) & \equiv 0 \quad \bmod n .
\end{aligned}
$$

The probability that JB always fails by sending $x \equiv \pm s \bmod n$ in all 20 submissions is:

$$
\frac{1}{2^{20}}=\frac{1}{1048576} \approx 10^{-6} .
$$

b) Zero-knowledge property: No information about the secret may be revealed during the response.
However, in this protocol it is even possible, that the full secret $s$ is revealed. Hence, this is not secure a zero-knowledge protocol!
c) A passive eavesdropper $E$ can only obtain the values $x$ and $y$. $E$ only knows the square roots $\pm x$ of $y$ modulo $n$, which is useless in the next iteration. This knowledge is not sufficient to factorize $n$.

