Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 2

Friday, November 6, 2015

Problem 1. (properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_{p}^{*}$. Show the following:
a) a is a quadratic residue modulo p if and only if there exists an even $i \in \mathbb{N}_{0}$ with $a \equiv g^{i} \bmod p$.
b) If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_{p}^{*}$ are quadratic residues modulo p.
c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 2. (modified Rabin cryptosystem) Consider the modification of the Rabin Cryptosystem in which $e_{K}(m)=c=m \cdot(m+B) \bmod n$, where $B \in \mathbb{Z}_{n}$ is part of the public key. Supposing that $p=199, q=211, n=p q$, and $B=1357$, perform the following computations.
a) Compute the encryption $y=e_{K}(32767)$.
b) Determine the four possible decryptions of this given ciphertext y.

Problem 3. (Rabin cryptosystem) Alice and Bob are using the Rabin Cryptosystem. Bob uses the public key $n=4757=67 \cdot 71$. All integers in the set $\{1, \ldots, n-1\}$ are represented as a bit sequence of 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1 . Alice sends the cryptogram $c=1935$. Decipher this cryptogram.

