

Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 2 Friday, November 6, 2015

Problem 1. (properties of quadratic residues) Let p be prime, g a primitive element modulo p and $a, b \in \mathbb{Z}_p^*$. Show the following:

- **a**) *a* is a quadratic residue modulo *p* if and only if there exists an even $i \in \mathbb{N}_0$ with $a \equiv g^i \mod p$.
- **b)** If p is odd, then exactly one half of the elements $x \in \mathbb{Z}_p^*$ are quadratic residues modulo p.
- c) The product $a \cdot b$ is a quadratic residue modulo p if and only if a and b are both either quadratic residues or quadratic non-residues modulo p.

Problem 2. (modified Rabin cryptosystem) Consider the modification of the Rabin Cryptosystem in which $e_K(m) = c = m \cdot (m+B) \mod n$, where $B \in \mathbb{Z}_n$ is part of the public key. Supposing that p = 199, q = 211, n = pq, and B = 1357, perform the following computations.

- a) Compute the encryption $y = e_K(32767)$.
- **b)** Determine the four possible decryptions of this given ciphertext y.

Problem 3. (*Rabin cryptosystem*) Alice and Bob are using the Rabin Cryptosystem. Bob uses the public key $n = 4757 = 67 \cdot 71$. All integers in the set $\{1, \ldots, n-1\}$ are represented as a bit sequence of 13 bits. In order to be able to identify the correct message, Alice and Bob agreed to only send messages with the last 2 bits set to 1. Alice sends the cryptogram c = 1935. Decipher this cryptogram.