Tutorial 3

Friday, November 13, 2015

Problem 1. (coin flipping) Consider the coin flipping protocol. Let $p>2$ be prime.
a) Show that if $x \equiv-x \bmod p$, then $x \equiv 0 \bmod p$.
b) Suppose Alice cheats when flipping coins over the telephone by choosing $p=q$. Show that Bob almost always loses if he trusts Alice.
c) Alice chooses $n=p^{2}$ as the secret key, but Bob suspects that Alice has cheated. Can Bob discover her attempt to cheat? Can Bob use Alice' cheating as an advantage for himself?

Problem 2. (Legendre symbol) Let $\left(\frac{a}{p}\right)$ be the Legendre symbol, with $p>2$ prime. Prove the following calculation rules.
a) $\left(\frac{-1}{p}\right)=(-1)^{\frac{p-1}{2}}$
b) $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$
c) $\left(\frac{a}{p}\right)=\left(\frac{b}{p}\right)$, if $a \equiv b \bmod p$

Problem 3. (Jacobi symbol) Show that Algorithm 6 from the lecture notes computes the Jacobi symbol.
Hint: Use the following equations for any odd integers $n, m>2$.

$$
\begin{aligned}
\left(\frac{m}{n}\right) & =(-1)^{\frac{m-1}{2} \frac{n-1}{2}} \cdot\left(\frac{n}{m}\right) \quad \text { law of quadratic reciprocity } \\
\left(\frac{2}{n}\right) & =(-1)^{\frac{n^{2}-1}{8}}
\end{aligned}
$$

