Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

Tutorial 7

Friday, December 18, 2015

Problem 1. (verifying an ElGamal signature) The hashed message $h(m)=65$ was signed using the ElGamal signature scheme with public parameters $y=399, p=859$, and $a=206$.
Verify the signature $(r, s)=(373,15)$.

Problem 2. (forging an ElGamal signature without hash function) Let p be prime with $p \equiv 3 \bmod 4$, and let a be a primitive element modulo p. Furthermore, let $y \equiv a^{x} \bmod p$ be a public ElGamal key and let $a \mid p-1$. Here, no hash function is used for the ElGamal signature. Assume that it is possible to find $z \in \mathbb{Z}$ such that $a^{r z} \equiv y^{r} \bmod p$.
Show that (r, s) with $s=(p-3) 2^{-1}(m-r z)$ yields a valid ElGamal signature for a chosen message m.

Problem 3. (forging an ElGamal signature with hash function) An attacker has intercepted one valid signature (r, s) of the ElGamal signature scheme and a hashed message $h(m)$ which is invertible modulo $p-1$.
Show that the attacker can generate a signature (r^{\prime}, s^{\prime}) for any hashed message $h\left(m^{\prime}\right)$, if $1 \leq r<p$ is not verified.

Problem 4. (variations of the ElGamal signature scheme) The ElGamal signature scheme computes the signature as $s=k^{-1}(h(m)-x r) \bmod (p-1)$. Consider the following variations of the ElGamal signature scheme.
a) Consider the signing equation $s=x^{-1}(h(m)-k r) \bmod (p-1)$.

Show that $a^{h(m)} \equiv y^{s} r^{r} \quad \bmod p$ is a valid verification procedure.
b) Consider the signing equation $s=x h(m)+k r \bmod (p-1)$. Propose a valid verification procedure.
c) Consider the signing equation $s=x r+k h(m) \bmod (p-1)$. Propose a valid verification procedure.

