



Prof. Dr. Rudolf Mathar, Jose Calvo, Markus Rothe

## Tutorial 8 Friday, January 8, 2016

**Problem 1.** (DSA parameter generation algorithm) Consider the parameter generation algorithm of DSA. It provides a prime  $2^{159} < q < 2^{160}$  and an integer  $0 \le t \le 8$  such that for prime p,  $2^{511+64t} and <math>q \mid p-1$  holds.

The following scheme is given:

- (1) Select a random  $g \in \mathbb{Z}_p^*$
- (2) Compute  $a = g^{\frac{p-1}{q}} \mod p$
- (3) If a = 1, go to label (1) else return a

Prove that a is a generator of the cyclic subgroup of order q in  $\mathbb{Z}_p^*$ .

**Problem 2.** (*DSA hash function*) For the security of DSA a hash-function is mandatory. Show that it is possible to forge a signature of a modified scheme where no cryptographic hash function is used.

Hint: A related attack is provided in the lecture notes for the ElGamal signature scheme.

**Problem 3.** (probabilistic algorithm for a pair of primes)

a) Suggest a probabilistic algorithm to determine a pair of primes p, q with

**b**) What is the success probability of your algorithm?

**Hint**: Assume the unproven statement that the number of primes of the form kq + 1,  $k \in \mathbb{N}$ , is asymptotically the number given by the "prime number theorem" divided by q.