Homework 1 in Cryptography I
 Prof. Dr. Rudolf Mathar, Georg Böcherer, Paul de Kerret
 29.04.2010

Exercise 1. Are 377 and 161 invertible in \mathbb{Z}_{2011} ? 54 in \mathbb{Z}_{2010} ? 3^{2009} in \mathbb{Z}_{37} ? Justify and find the inverse when it exists.
hint: Apply the extended euclidian algorithm (in the script). $3^{29} \equiv 28 \bmod 37$.

Exercise 2. Decrypt the following ciphertexts and explain your approach. The plaintext messages are in english.
a) Caesar cipher: sdscsxceppsmsoxddyzbydomdyebcovfocgsdrv kgcgoxoondyzbydomdyebcovfocgsdrwkdrowkdsmc
hint: Use the most frequent letter in english for the frequency analysis.
b) Affine cipher:
onhldqrttydxtlgtojkhqtjxctdc
hint: Use " t " and "o" on the code side for the frequency analysis.

Exercise 3. Consider an affine cipher over an alphabet with m letters.
(a) Determine the number of keys for this cipher. How many keys are there if m is prime? Why is it "better" to use an affine cipher with an alphabet of 23 instead of 26 letters?
(b) Show that the repeated encryption of a plaintext with two affine ciphers is not different from the encryption with one affine cipher using a different key.

