Homework 2 in Cryptography I
Prof. Dr. Rudolf Mathar, Paul de Kerret, Georg Boecherer
06.05.2010

Exercise 4.

Given is a bit sequence $k=\left(k_{1}, k_{2}, k_{3}, k_{4}, k_{5}, k_{6}, k_{7}, k_{8}\right) \in \mathbb{Z}_{2}^{8}$ of length 8 and a permutation π of the numbers $1, \ldots, 8$. Consider the following function:

$$
E: \mathbb{Z}_{2}^{8} \rightarrow \mathbb{Z}_{2}^{8},\left(m_{1}, \ldots, m_{8}\right) \mapsto\left(m_{\pi(1)} \oplus k_{1}, \ldots, m_{\pi(8)} \oplus k_{8}\right) .
$$

Here \oplus denotes addition modulo 2 .
(a) What are the cardinalities of the plaintext space \mathbb{Z}_{2}^{8} and of the ciphertext space \mathbb{Z}_{2}^{8} ?
(b) Show, that E can be used as an encryption function.
(c) What is the key space and what is its cardinality?
(d) Determine the decryption function.

Exercise 5.

(a) Prove the following equivalence:

$$
A \in \mathbb{Z}_{n}^{m \times m} \text { is invertible } \Longleftrightarrow \operatorname{gcd}(n, \operatorname{det}(\mathrm{~A}))=1
$$

Hint: To show " \Leftarrow ", use $A^{-1}=\operatorname{det}(A)^{-1} \operatorname{adj}(A)$, where $\operatorname{adj}(A)$ denotes the adjugate of A.
(b) Is the following matrix invertible? If yes, compute the inverse matrix.

$$
M=\left(\begin{array}{ll}
7 & 1 \\
9 & 2
\end{array}\right) \in \mathbb{Z}_{26}^{2 \times 2}
$$

Exercise 6. The following alphabet with 29 elements

$$
X=\{A, B, \ldots, Z, \#, *,-\}
$$

can be identified with $\mathbb{Z}_{29}=\{0,1, \ldots, 28\}$. Suppose the blocklength is $m=2$. Decrypt the ciphertext Y J G-H T which is encrypted by a Hill cipher with

$$
U=\left(\begin{array}{cc}
3 & 13 \\
22 & 15
\end{array}\right) \in \mathbb{Z}_{29}^{2 \times 2}
$$

