Homework 5 in Cryptography I
 Prof. Dr. Rudolf Mathar, Paul de Kerret, Georg Boecherer
 17.06.2009

Exercise 13. A block cipher is a cryptosystem where plaintext and ciphertext space are the set \mathcal{A}^{n} of words of length n over an alphabet \mathcal{A}. The number n is called the block length.

Show that the encryption functions of block ciphers are permutations. How many different block ciphers exist if $\mathcal{A}=\{0,1\}$ and the block length is $n=6$?

Exercise 14. Consider the following AES-128 key given in hexadecimal notation:

$$
K=2 d 61726965007661 \text { 6e } 0043 \text { 6c } 65656666
$$

What are the first 4 bytes of round key K_{1} ?

Exercise 15. Within the step MixColumns of the AES algorithm a vector $\mathbf{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}\right)^{\prime}, r_{i} \in \mathbb{F}_{2^{8}} \triangleq \mathbb{F}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right) \mathbb{F}_{2}[x]$ is given from $\mathbf{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{\prime}, c_{i} \in \mathbb{F}_{2^{8}} \triangleq \mathbb{F}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right) \mathbb{F}_{2}[x]$, by $\mathbf{r}=\mathbf{T c}$ with
$\mathbf{T}=\left(\begin{array}{cccc}x & (x+1) & 1 & 1 \\ 1 & x & (x+1) & 1 \\ 1 & 1 & x & (x+1) \\ (x+1) & 1 & 1 & x\end{array}\right) \in \mathbb{F}_{2^{8}}^{4 \times 4} \triangleq\left(\mathbb{F}_{2}[x] /\left(x^{8}+x^{4}+x^{3}+x+1\right) \mathbb{F}_{2}[x]\right)^{4 \times 4}$.
Show $\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \equiv r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0} \bmod u^{4}+1$.

