Homework 8 in Cryptography I
 Prof. Dr. Rudolf Mathar, Paul de Kerret, Georg Bocherer
 08.07.2010

Exercise 22. Alice encrypts a message m for Bob with RSA. Bob's public key is $(899,11)$. Alice sends the encrypted message 468 to Bob.
What is the message m ?

Exercise 23. Assume an RSA module $n:=p q$ with two primes $p \neq q$ and a public key $e=d^{-1}$. The message $m \in\{1, \ldots, n-1\}$ is encrypted using the RSA-algorithm with e.
(a) Show that it is possible to compute the secret key d if m and n are not coprime, i.e. if $p \mid m$ or $q \mid m$.
(b) Calculate the probability for m and n having common divisors.
(c) How large is the probability if n has 1024 bits? The primes p and q are approximately of same size $(p, q \approx \sqrt{n})$.

Exercise 24. Assume a single message m is encrypted with RSA twice: once with the public key (n, e) and once with the public key (n, f). The numbers e and f are relatively prime. Is it possible to decode the message with knowledge of the public parameters and the cryptograms?

