

Homework 9 in Cryptography I

Prof. Dr. Rudolf Mathar, Paul de Kerret, Georg Bocherer 15.07.2010

Exercise 25. Alice plays with the ElGamal encryption system and encrypts the messages m_1 and m_2 using her own public key. The generated cryptograms are

$$C_1 = (1537, 2192)$$
 and $C_2 = (1537, 1393)$.

The public key of Alice is (p, a, y) = (3571, 2, 2905).

- a) What did Alice do wrong?
- b) The first message is given as $m_1 = 567$. Determine the message m_2 .

Exercise 26. Consider the finite field \mathbb{F}_{2^3} with 8 elements. This field can be constructed as the residue ring of the polynomial ring $\mathbb{F}_2[u]$ modulo an ideal generated by an irreducible polynomial of degree 3.

a) Determine all irreducible polynomials of degree 3 in $\mathbb{F}_2[u]$.

Consider the cyclic group $G = \mathbb{F}_{2^3}^*$, where the multiplication is taken modulo the polynomial $f(u) = u^3 + u + 1$.

b) Show that u is a generator for G.

Exercise 27. Consider the group G of the last exercise and choose as the primitive element a = u. Execute the generalized ElGamal encryption with public key y = (110), which is the binary representation of the polynom $u^2 + u$, message m = (111) and k = 3. What is the private key x of Alice?