

## **Basics** from Algebra

RNTHAACHEN

**Definition 1.** A set  $\mathcal{G}$  together with a law of composition  $\circ : \mathcal{G} \times \mathcal{G} \to \mathcal{G}, (a, b) \mapsto a \circ b$  is called a group if the following holds:

- $(a \circ b) \circ c = a \circ (b \circ c)$  for all  $a, b, c \in G$  (associativity).
- There exists  $e \in G$  with  $a \circ e = e \circ a = a$  for all  $a \in G$  (neutral element).
- For each  $a \in G$  there exists  $a' \in G$  such that  $a \circ a' = a' \circ a = e$  (inverse element).

**Definition 2.** A group is said to be commutative or Abelian if

$$a \circ b = b \circ a, \forall a, b \in G.$$

$$\tag{1}$$

**Definition 3.** A set  $\mathcal{R}$  together with two laws of composition  $+ : \mathcal{R} \times \mathcal{R} \to \mathcal{R}, (a, b) \mapsto a+b$ and  $\cdot : \mathcal{R} \times \mathcal{R} \to \mathcal{R}, (a, b) \mapsto a \cdot b$  is called a ring if the following holds:

- $(\mathcal{R}, +)$  is an Abelian group.
- $(a \cdot b) \cdot c = a \cdot (b \cdot c)$  (associativity).
- For each  $a \in \mathcal{R}$  there exists  $u \in \mathcal{R}$  such that  $a \cdot u = u \cdot a = a$  (neutral element).
- $(a+b) \cdot c = a \cdot c + b \cdot c$  and  $c \cdot (a+b) = c \cdot a + c \cdot b, \forall a, b, c \in \mathcal{R}$  (distributivity).

A ring is said to be commutative if  $a \cdot b = b \cdot a, \forall a, b \in \mathcal{R}$ .

**Definition 4.** Let  $(\mathcal{R}, +, \cdot)$  be a commutative ring and let  $\mathcal{I} \subseteq \mathcal{R}$ .  $\mathcal{I}$  is called ideal of  $\mathcal{R}$  if the following holds:

- $(\mathcal{I}, +)$  is a group.
- $i \cdot r \in \mathcal{I}, \forall i \in \mathcal{I}, r \in \mathcal{R}.$

**Definition 5.** A set F together with two laws of composition  $+ : F \times F \to F$ ,  $(a, b) \mapsto a + b$ and  $\cdot : F \times F \to F$ ,  $(a, b) \mapsto a \cdot b$  is called a field if the following holds:

- (F, +) is an Abelian group.
- $(F \setminus \{0\}, \cdot)$  is an Abelian group.
- $c \cdot (a+b) = c \cdot a + c \cdot b, \forall a, b, c \in F.$

## Modular Arithmetic

**Definition 6.** Two integers  $a, b \in \mathbb{Z}$  are said to be congruent modulo  $n \in \mathbb{N}$ , if their difference a - b is an integer multiple of n. We say that a is congruent to b modulo n and write it as

$$a \equiv b \mod n. \tag{2}$$

**Proposition 1.** For  $a, b \in \mathbb{Z}$  and  $n \in \mathbb{N}$ , the following equivalence holds:

$$a \equiv b \mod n \Leftrightarrow \exists k \in \mathbb{Z} : a = b + kn.$$
 (3)

**Proposition 2.** For  $a, b, c \in \mathbb{Z}$  and  $n \in \mathbb{N}$ , it holds that

- a)  $a \equiv 0 \mod n$ , if and only if n|a.
- b)  $a \equiv a \mod n$  (reflexive).
- c)  $a \equiv b \mod n$ , if and only if  $b \equiv a \mod n$  (symmetric).
- d) if  $a \equiv b \mod n$  and  $b \equiv c \mod n$ , then  $a \equiv c \mod n$  (transitive).
- e) if  $a \equiv b \mod n$  and  $c \equiv d \mod n$ , then

 $a + c \equiv b + d \mod n, \quad a - c \equiv b - d \mod n, \quad a \cdot c \equiv b \cdot d \mod n.$  (4)

*Proof.* a)  $a \equiv 0 \mod n \quad \Leftrightarrow \exists k \in \mathbb{Z} : a = kn \quad \Leftrightarrow n | a.$ 

b) 
$$a - a = 0 \mod n$$
.

c) if 
$$a \equiv b \mod n \iff \exists k \in \mathbb{Z} : a - b = nk \iff \exists k \in \mathbb{Z} : b - a = n(-k).$$

- d)  $\exists k, \ell \in \mathbb{Z} : a = b + nk, b = c + \ell \Rightarrow a = c + n(k + \ell) \Rightarrow a \equiv c \mod n.$
- e)  $\exists k, \ell \in \mathbb{Z} : a = b + nk, c = d + \ell n \Rightarrow a + c = b + d + n(k + \ell) \Rightarrow a + c \equiv b + d \mod n.$

**Proposition 3.** The relation  $\equiv$  is an equivalence relation and defines equivalence classes on  $\mathbb{Z}$  denoted as  $a + m\mathbb{Z} := \{a + mz | z \in \mathbb{Z}\}$ 

*Proof.* The proposition follows directly from b, c, and d.

**Definition 7.** The set of classes  $\{a + m\mathbb{Z} | , a \in \mathbb{Z}\}$  is denoted  $\mathbb{Z}/m\mathbb{Z}$ . It contains m elements and can be identified with the set  $\mathbb{Z}_m = \{0, 1, \dots, m-1\}$ .

**Definition 8.** Two integers  $m, n \in \mathbb{N}$  are said to be relatively prime if gcd(m, n) = 1.

**Theorem 1.** 1) (Bézout) Let  $m, n \in \mathbb{Z}$  be any two integers, then there exist  $p, q \in \mathbb{Z}$  (called Bézout numbers or Bézout coefficients) such that

$$mp + nq = \gcd(m, n). \tag{5}$$

2) Two integers m and n are relatively prime if there exist  $p, q \in \mathbb{Z}$  such that

$$mp + nq = 1. (6)$$

## **Proposition 4.** $(\mathbb{Z}_m, +)$ is an Abelian group.

*Proof.* We verify that the necessary conditions for the group are fulfilled:

- a) We first show that the law + is well defined on  $\mathbb{Z}_m$ :  $a, b \in \mathbb{Z}_m \Rightarrow a + b \in \mathbb{Z}_m$  (closure).
- b)  $a, b, c \in \mathbb{Z}_m, a + (b + c) = (a + b) + c$  (associativity).
- c)  $0 \in \mathbb{Z}_m$  (neutral element).
- d)  $\forall a, -a \in \mathbb{Z}_m$  (inverse element).

**Proposition 5.** a invertible in  $(\mathbb{Z}_m, \cdot)$  is equivalent to gcd(a, m) = 1.

*Proof.* " $\Rightarrow$ ": Assume *a* is invertible:

$$\exists b \in \mathbb{Z}_m : ab \equiv 1 \mod m \quad \Rightarrow \exists k \in \mathbb{Z} : ab - mk = 1, \tag{7}$$

and from Bézout's Theorem we can conclude that a and m are relatively prime. This is also easily obtained using that d|a and d|m, such that d|ab - mk = 1.

"  $\Leftarrow$  ": Assume  $d = \gcd(a, m) = 1$ , from Bézout's Theorem,  $\exists p, q, \in \mathbb{Z} : ap + qm = 1$  which implies that  $ap \equiv 1 \mod m$  and a is invertible in  $\mathbb{Z}_m$ .

**Definition 9.** The set of all invertible elements of  $\mathbb{Z}_m$  is called the multiplicative group of  $\mathbb{Z}_m$  and denoted as  $\mathbb{Z}_m^*$ .

**Definition 10.** The Euler function  $\varphi$  is defined on  $\mathbb{Z}$  as  $\varphi(m) = |\mathbb{Z}_m^*|$ , where  $|\cdot|$  denotes the cardinal operator.

**Proposition 6.**  $(\mathbb{Z}_m^*, \cdot)$  is an Abelian group.

*Proof.* • Associativity and commutativity are straightforward.

- $\forall a, b \in \mathbb{Z}_m^*, (a \cdot b)^{-1} = a^{-1} \cdot b^{-1}$  (closure).
- $\forall n \in \mathbb{Z}_m^*, n \cdot n^{-1} = 1 \in \mathbb{Z}_m^*$  (neutral element).
- $\forall n \in \mathbb{Z}_m^*, \exists n^{-1} \in \mathbb{Z}_m : n^{-1}n = 1 \Rightarrow n^{-1} \in \mathbb{Z}_m^* \text{ (inverse element).}$

**Proposition 7.** If m is prime,  $\mathbb{Z}_m^* = \mathbb{Z}_m \setminus \{0\}$ , and  $\mathbb{Z}_m$  is a field.

**Proposition 8.** If  $n = p_1^{k_1} \cdots p_r^{k_r}$  where the  $p_i$  is are distinct primes, then

$$\varphi(n) = \varphi(p_1) p_1^{k_1 - 1} \cdots \varphi(p_r) p_r^{k_r - 1} = (p_1 - 1) p_1^{k_1 - 1} \cdots (p_r - 1) p_r^{k_r - 1}.$$
(8)

Particularly,  $\varphi(p) = p - 1$  for p prime.

**Theorem 2.** (Fermat, Euler) Let  $a \in \mathbb{Z}_n^*$ . Then

$$a^{|\mathbb{Z}_n^*|} = a^{\varphi(n)} \equiv 1 \mod n.$$
(9)

In particular Fermat's little theorem states that if p is prime and gcd(a, p) = 1 (a and p are relatively prime), then  $a^{p-1} \equiv 1 \mod p$ .

A straightforward generalization is then that if p is prime and m and n are positive integers such that  $m \equiv n \mod p - 1$  then  $\forall a \in \mathbb{Z}, a^m \equiv a^n \mod p$ .