Mathematical Background

Prof. Dr. Rudolf Mathar, Georg Böcherer, Paul de Kerret 22.04.2010, Cryptography I.

Basics from Algebra

Definition 1. A set \mathcal{G} together with a law of composition $\circ: \mathcal{G} \times \mathcal{G} \rightarrow \mathcal{G},(a, b) \mapsto a \circ b$ is called a group if the following holds:

- $(a \circ b) \circ c=a \circ(b \circ c)$ for all $a, b, c \in G$ (associativity).
- There exists $e \in G$ with $a \circ e=e \circ a=a$ for all $a \in G$ (neutral element).
- For each $a \in G$ there exists $a^{\prime} \in G$ such that $a \circ a^{\prime}=a^{\prime} \circ a=e$ (inverse element).

Definition 2. A group is said to be commutative or Abelian if

$$
\begin{equation*}
a \circ b=b \circ a, \forall a, b \in G . \tag{1}
\end{equation*}
$$

Definition 3. A set \mathcal{R} together with two laws of composition $+: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R},(a, b) \mapsto a+b$ and $\cdot: \mathcal{R} \times \mathcal{R} \rightarrow \mathcal{R},(a, b) \mapsto a \cdot b$ is called a ring if the following holds:

- $(\mathcal{R},+)$ is an Abelian group.
- $(a \cdot b) \cdot c=a \cdot(b \cdot c)$ (associativity).
- For each $a \in \mathcal{R}$ there exists $u \in \mathcal{R}$ such that $a \cdot u=u \cdot a=a$ (neutral element).
- $(a+b) \cdot c=a \cdot c+b \cdot c$ and $c \cdot(a+b)=c \cdot a+c \cdot b, \forall a, b, c \in \mathcal{R}$ (distributivity).
A ring is said to be commutative if $a \cdot b=b \cdot a, \forall a, b \in \mathcal{R}$.
Definition 4. Let $(\mathcal{R},+, \cdot)$ be a commutative ring and let $\mathcal{I} \subseteq \mathcal{R}$. \mathcal{I} is called ideal of \mathcal{R} if the following holds:
- $(\mathcal{I},+)$ is a group.
- $i \cdot r \in \mathcal{I}, \forall i \in \mathcal{I}, r \in \mathcal{R}$.

Definition 5. A set F together with two laws of composition $+: F \times F \rightarrow F,(a, b) \mapsto a+b$ and $\cdot: F \times F \rightarrow F,(a, b) \mapsto a \cdot b$ is called a field if the following holds:

- $(F,+)$ is an Abelian group.
- $(F \backslash\{0\}, \cdot)$ is an Abelian group.
- $c \cdot(a+b)=c \cdot a+c \cdot b, \forall a, b, c \in F$.

Modular Arithmetic

Definition 6. Two integers $a, b \in \mathbb{Z}$ are said to be congruent modulo $n \in \mathbb{N}$, if their difference $a-b$ is an integer multiple of n. We say that a is congruent to b modulo n and write it as

$$
\begin{equation*}
a \equiv b \quad \bmod n . \tag{2}
\end{equation*}
$$

Proposition 1. For $a, b \in \mathbb{Z}$ and $n \in \mathbb{N}$, the following equivalence holds:

$$
\begin{equation*}
a \equiv b \quad \bmod n \Leftrightarrow \exists k \in \mathbb{Z}: a=b+k n . \tag{3}
\end{equation*}
$$

Proposition 2. For $a, b, c \in \mathbb{Z}$ and $n \in \mathbb{N}$, it holds that
a) $a \equiv 0 \bmod n$, if and only if $n \mid a$.
b) $a \equiv a \bmod n$ (reflexive).
c) $a \equiv b \bmod n$, if and only if $b \equiv a \bmod n($ symmetric).
d) if $a \equiv b \bmod n$ and $b \equiv c \bmod n$, then $a \equiv c \bmod n($ transitive).
e) if $a \equiv b \bmod n$ and $c \equiv d \bmod n$, then

$$
\begin{equation*}
a+c \equiv b+d \quad \bmod n, \quad a-c \equiv b-d \quad \bmod n, \quad a \cdot c \equiv b \cdot d \quad \bmod n . \tag{4}
\end{equation*}
$$

Proof. a) $a \equiv 0 \bmod n \quad \Leftrightarrow \exists k \in \mathbb{Z}: a=k n \quad \Leftrightarrow n \mid a$.
b) $a-a=0 \bmod n$.
c) if $a \equiv b \bmod n \quad \Leftrightarrow \exists k \in \mathbb{Z}: a-b=n k \quad \Leftrightarrow \exists k \in \mathbb{Z}: b-a=n(-k)$.
d) $\exists k, \ell \in \mathbb{Z}: a=b+n k, b=c+\ell \Rightarrow a=c+n(k+\ell) \quad \Rightarrow a \equiv c \bmod n$.
e) $\exists k, \ell \in \mathbb{Z}: a=b+n k, c=d+\ell n \Rightarrow a+c=b+d+n(k+\ell) \Rightarrow a+c \equiv b+d \bmod n$.

Proposition 3. The relation \equiv is an equivalence relation and defines equivalence classes on \mathbb{Z} denoted as $a+m \mathbb{Z}:=\{a+m z \mid z \in \mathbb{Z}\}$

Proof. The proposition follows directly from b), c), and d).
Definition 7. The set of classes $\{a+m \mathbb{Z} \mid, a \in \mathbb{Z}\}$ is denoted $\mathbb{Z} / m \mathbb{Z}$. It contains m elements and can be identified with the set $\mathbb{Z}_{m}=\{0,1, \ldots, m-1\}$.

Definition 8. Two integers $m, n \in \mathbb{N}$ are said to be relatively prime if $\operatorname{gcd}(m, n)=1$.
Theorem 1. 1) (Bézout) Let $m, n \in \mathbb{Z}$ be any two integers, then there exist $p, q \in \mathbb{Z}$ (called Bézout numbers or Bézout coefficients) such that

$$
\begin{equation*}
m p+n q=\operatorname{gcd}(m, n) \tag{5}
\end{equation*}
$$

2) Two integers m and n are relatively prime if there exist $p, q \in \mathbb{Z}$ such that

$$
\begin{equation*}
m p+n q=1 \tag{6}
\end{equation*}
$$

Proposition 4. $\left(\mathbb{Z}_{m},+\right)$ is an Abelian group.
Proof. We verify that the necessary conditions for the group are fulfilled:
a) We first show that the law + is well defined on $\mathbb{Z}_{m}: a, b \in \mathbb{Z}_{m} \Rightarrow a+b \in \mathbb{Z}_{m}$ (closure).
b) $a, b, c \in \mathbb{Z}_{m}, a+(b+c)=(a+b)+c$ (associativity).
c) $0 \in \mathbb{Z}_{m}$ (neutral element).
d) $\forall a,-a \in \mathbb{Z}_{m}$ (inverse element).

Proposition 5. a invertible in $\left(\mathbb{Z}_{m}, \cdot\right)$ is equivalent to $\operatorname{gcd}(a, m)=1$.
Proof. " \Rightarrow ": Assume a is invertible:

$$
\begin{equation*}
\exists b \in \mathbb{Z}_{m}: a b \equiv 1 \quad \bmod m \quad \Rightarrow \exists k \in \mathbb{Z}: a b-m k=1 \tag{7}
\end{equation*}
$$

and from Bézout's Theorem we can conclude that a and m are relatively prime. This is also easily obtained using that $d \mid a$ and $d \mid m$, such that $d \mid a b-m k=1$.
$" \Leftarrow ":$ Assume $d=\operatorname{gcd}(a, m)=1$, from Bézout's Theorem, $\exists p, q, \in \mathbb{Z}: a p+q m=1$ which implies that $a p \equiv 1 \bmod m$ and a is invertible in \mathbb{Z}_{m}.

Definition 9. The set of all invertible elements of \mathbb{Z}_{m} is called the multiplicative group of \mathbb{Z}_{m} and denoted as \mathbb{Z}_{m}^{*}.

Definition 10. The Euler function φ is defined on \mathbb{Z} as $\varphi(m)=\left|\mathbb{Z}_{m}^{*}\right|$, where $|\cdot|$ denotes the cardinal operator.

Proposition 6. $\left(\mathbb{Z}_{m}^{*}, \cdot\right)$ is an Abelian group.
Proof. - Associativity and commutativity are straightforward.

- $\forall a, b \in \mathbb{Z}_{m}^{*},(a \cdot b)^{-1}=a^{-1} \cdot b^{-1}$ (closure).
- $\forall n \in \mathbb{Z}_{m}^{*}, n \cdot n^{-1}=1 \in \mathbb{Z}_{m}^{*}$ (neutral element).
- $\forall n \in \mathbb{Z}_{m}^{*}, \exists n^{-1} \in \mathbb{Z}_{m}: n^{-1} n=1 \Rightarrow n^{-1} \in \mathbb{Z}_{m}^{*}$ (inverse element).

Proposition 7. If m is prime, $\mathbb{Z}_{m}^{*}=\mathbb{Z}_{m} \backslash\{0\}$, and \mathbb{Z}_{m} is a field.
Proposition 8. If $n=p_{1}^{k_{1}} \cdots p_{r}^{k_{r}}$ where the p_{i} is are distinct primes, then

$$
\begin{equation*}
\varphi(n)=\varphi\left(p_{1}\right) p_{1}^{k_{1}-1} \cdots \varphi\left(p_{r}\right) p_{r}^{k_{r}-1}=\left(p_{1}-1\right) p_{1}^{k_{1}-1} \cdots\left(p_{r}-1\right) p_{r}^{k_{r}-1} . \tag{8}
\end{equation*}
$$

Particularly, $\varphi(p)=p-1$ for p prime.
Theorem 2. (Fermat,Euler) Let $a \in \mathbb{Z}_{n}^{*}$. Then

$$
\begin{equation*}
a^{\left|\mathbb{Z}_{n}^{*}\right|}=a^{\varphi(n)} \equiv 1 \quad \bmod n . \tag{9}
\end{equation*}
$$

In particular Fermat's little theorem states that if p is prime and $\operatorname{gcd}(a, p)=1$ (a and p are relatively prime), then $a^{p-1} \equiv 1 \bmod p$.

A straightforward generalization is then that if p is prime and m and n are positive integers such that $m \equiv n \bmod p-1$ then $\forall a \in \mathbb{Z}, a^{m} \equiv a^{n} \bmod p$.

