Homework 11 in Cryptography I Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 14.07.2011

Exercise 36.¹

RNNTHAACHE

Alice and Bob are using the Shamir's no-key protocol to exchange a message. They agree to use the prime p = 31337 for their communication. Alice chooses a random number a = 9999 while Bob chooses b = 1011. Alice's message is m = 3567.

- (a) Carry out the protocol by calculating the inverses $a^{-1} \pmod{p-1}$ and $b^{-1} \pmod{p-1}$.
- (b) Compute all messages with the given values.

Exercise 37.

Prove Proposition 8.3 from the lecture notes: Let n = pq, $p \neq q$ prime and x a nontrivial solution of $x^2 \equiv 1 \mod n$, i.e., $x \not\equiv \pm 1 \mod n$. Then

$$gcd(x+1,n) \in \{p,q\}.$$

Exercise 38.

Alice is using the ElGamal encryption system for encrypting the messages m_1 and m_2 . The generated cryptograms are

 $\mathbf{c}_1 = (1537, 2192)$ and $\mathbf{c}_2 = (1537, 1393)$.

The public key of Alice is (p, a, y) = (3571, 2, 2905).

- (a) What has Alice done wrong here?
- (b) The first message is given as $m_1 = 567$. Determine the message m_2 .

¹**Remark**: For the calculation of the Square-And-Multiply Algorithm, you are free to use your computer