Homework 2 in Cryptography I
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier 21.04.2011

Exercise 5.

(a) Prove the following equivalence:

$$
A \in \mathbb{Z}_{n}^{m \times m} \text { is invertible } \Longleftrightarrow \operatorname{gcd}(n, \operatorname{det}(\mathrm{~A}))=1
$$

(b) Is the following matrix invertible? If yes, compute the inverse matrix.

$$
M=\left(\begin{array}{ll}
7 & 1 \\
9 & 2
\end{array}\right) \in \mathbb{Z}_{26}^{2 \times 2} .
$$

Exercise 6. Compute the number of possible keys for the following cryptosystems:
(a) Substitution cipher,
(b) Affine cipher with the alphabet $\Sigma=\mathbb{Z}_{26}=\{0 \ldots 25\}$,
(c) Permutation cipher with a fixed blocklength k.

Exercise 7. Let e_{K} be one of the ciphers from the exercise above.
(a) Show that encrypting a message m with key K_{1} and the result afterwards with the key K_{2} is the same as doing one encryption with a different key K_{3}, i.e.

$$
e_{K_{2}}\left(e_{K_{1}}(m)\right)=e_{K_{3}}(m) .
$$

(b) Compute the corresponding keys for the concatenation in all three cases.

