Lehrstuhl für Theoretische Informationstechnik

Homework 5 in Cryptography I - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier12.05.2011

Solution to Exercise 16.

Theorem 4.3 shall be proven.

(a) X is a discrete random variable with $p_i = P(X = x_i), i = 1, ..., m$. It holds

$$H(X) = -\sum_{i} p_i \log p_i \ge 0,$$

as $p_i \ge 0$ and $-\log p_i \ge 0$ for $0 < p_i \le 1$ and $0 \cdot \log 0 = 0$ per definition. Equality holds, if all addends are zero, i.e.,

$$p_i \log p_i = 0 \Leftrightarrow p_i \in \{0, 1\} \quad i = 1, \dots, m,$$

as $p_i > 0$ and $-\log p_i > 0$, thus, $-p_i \log p_i > 0$ for $0 < p_i < 1$.

(b)

$$H(X) - \log m = -\sum_{i} p_i \log p_i - \underbrace{\sum_{i=1} p_i \log m}_{=1}$$
$$= \sum_{i:p_i>0} p_i \log \frac{1}{m p_i}$$
$$= (\log e) \sum_{i:p_i>0} p_i \ln \frac{1}{m p_i}$$
$$\stackrel{\ln z \le z-1}{\le} (\log e) \sum_{i:p_i>0} p_i \left(\frac{1}{m p_i} - 1\right)$$
$$= (\log e) \left(\sum_{i:p_i>0} \frac{1}{m} - 1\right) \le 0.$$

As $\ln z = z - 1$ only holds for z = 1 it follows that equality holds iff $p_i = 1/m$, $i = 1, \ldots, m$. In particular, it follows $p_i > 0, i = 1, \ldots, m$.

(c) Define for $i = 1, \ldots, m$ and $j = 1, \ldots, d$

$$p_{i|j} = P(X = x_i \mid Y = y_j).$$

Show $H(X \mid Y) - H(X) \leq 0$ which is equivalent to the claim.

$$\begin{aligned} H(X \mid Y) - H(X) &= -\sum_{i,j} p_{i,j} \log p_{i|j} + \sum_{i} p_{i} \log p_{i} \\ &= -\sum_{i,j} p_{i,j} \log \frac{p_{i,j}}{p_{j}} + \sum_{i} \sum_{j} p_{i,j} \log p_{i} \\ &= \log(e) \sum_{i,j:p_{i,j}>0} p_{i,j} \ln \frac{p_{i} p_{j}}{p_{i,j}} \\ &\stackrel{\ln z \leq z-1}{\leq} \log(e) \sum_{i,j:p_{i,j}>0} p_{i,j} \left(\frac{p_{i} p_{j}}{p_{i,j}} - 1\right) \\ &= \log(e) \left(\sum_{i,j:p_{i,j}>0} p_{i} p_{j} - 1\right) \leq 0 \end{aligned}$$

Note that from $p_{i,j} > 0$ it follows $p_i, p_j > 0$. Equality hold for $\frac{p_i p_j}{p_{i,j}} = 1$ which is equivalent to X and Y being stochastically independent.

This means that the transinformation I(X, Y) = H(X) - H(X | Y) is nonnegative.

(d) It holds

$$H(X,Y) = -\sum_{i,j} p_{i,j} \log p_{i,j}$$

= $-\sum_{i,j} p_{i,j} [\log p_{i,j} - \log p_i + \log p_i]$
= $-\sum_{i,j} p_{i,j} \log \underbrace{\frac{p_{i,j}}{p_i}}_{p_{j|i}} - \sum_i \underbrace{\sum_{j} p_{i,j} \log p_i}_{=p_i}$
= $H(Y \mid X) + H(X).$

(e) It holds

$$H(X,Y) \stackrel{(d)}{=} H(X) + H(Y \mid X) \stackrel{(c)}{\leq} H(X) + H(Y)$$

with equality as in (c) iff X and Y are stochastically independent.