

Exercise 14.

RNTHAACHE

In Lemma 3.3 of the lecture notes, the expectation value of the index of coincidence was calculated for the ciphertext (C_1, \ldots, C_n) with random variables C_1, \ldots, C_n i.i.d.

(a) Derive the variance of the index of coincidence $Var(I_C)$ for the model of Lemma 3.3.

Exercise 15. Let X, Y be discrete random variables on a set Ω .

(a) Show that for any function $f: X(\Omega) \times Y(\Omega) \to \mathbb{R}$, the relationship

$$H(X, Y, f(X, Y)) = H(X, Y)$$

holds.

Exercise 16.

Let X, Y be random variables with support $\mathcal{X} = \{x_1, \ldots, x_m\}$ and $\mathcal{Y} = \{y_1, \ldots, y_m\}$. Assume that X, Y are distributed by $P(X = x_i) = p_i$ and $P(Y = y_j) = q_j$.

Let (X, Y) be the corresponding two-dimensional random variable with distribution $P(X = x_i, Y = y_j) = p_{ij}$.

Prove the following statements from Theorem 4.3:

- (a) $0 \le H(X)$ with equality if and only if $P(X = x_i) = 1$ for some *i*.
- (b) $H(X) \leq \log m$ with equality if and only if $P(X = x_i) = \frac{1}{m}$ for all *i*.
- (c) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent (conditioning reduces entropy).
- (d) $H(X,Y) = H(X) + H(Y \mid X)$ (chain rule of entropies).
- (e) $H(X,Y) \leq H(X) + H(Y)$ with equality if and only if X and Y are stochastically independent.

Hint (a): $\ln z \le z - 1$ for all z > 0 with equality if and only if z = 1. **Hint** (b),(c): If f is a convex function, the Jensen inequality $f(E(X)) \le E(f(X))$ holds.