

Note: This exercise will be held in lecture room AH III.

Exercise 17. Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem. Suppose that $P(\hat{M} = M) > 0$ for all $M \in \mathcal{M}, P(\hat{K} = K) > 0$ for all $K \in \mathcal{K}$ and $|\mathcal{M}| = |\mathcal{K}| = |\mathcal{C}|$ holds. Show that if $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy, then

$$P(\hat{K} = K) = \frac{1}{|\mathcal{K}|}$$
 for all $K \in \mathcal{K}$

and for all $M \in \mathcal{M}, C \in \mathcal{C}$, there is a unique $K \in \mathcal{K}$ such that e(M, K) = C.

Exercise 18. Let $\mathcal{M} = \{a, b\}$ be the message space, $\mathcal{K} = \{K_1, K_2, K_3\}$ be the key space and $\mathcal{C} = \{1, 2, 3, 4\}$ be the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K} , respectively, and with probability distributions: $P(\hat{M} = a) = \frac{1}{4}, P(\hat{M} = b) = \frac{3}{4}, P(\hat{K} = K_1) = \frac{1}{2}, P(\hat{K} = K_2) = \frac{1}{4}, P(\hat{K} = K_3) = \frac{1}{4}$. The following table explains the encryption rules:

- (a) Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and the key equivocation $H(\hat{K} \mid \hat{C})$.
- (b) Why does this cryptosystem not have perfect secrecy?
- (c) What has to be changed to achieve perfect secrecy?

Exercise 19. Consider affine ciphers on \mathbb{Z}_{26} , i.e., $\mathcal{M} = \mathcal{C} = \mathbb{Z}_{26}$ and $\mathcal{K} = \mathbb{Z}_{26}^* \times \mathbb{Z}_{26} = \{(a, b) \mid a, b \in \mathbb{Z}_{26}, \gcd(a, 26) = 1\}$. Select the key \hat{K} uniformly distributed at random and independently from the message \hat{M} .

Show that this cryptosystem has perfect secrecy.

RNNTHAACHE