

Exercise 20.

RNNTHAACHEI

(a) Which of the functions IP, E, $\oplus K_i$, S, P in the encryption procedure of the Data Encryption Standard (DES) are linear?

Note: Linearity: $f(a \oplus b) = f(a) \oplus f(b)$

Exercise 21.

Let M be a block of bits of length 64 and let K be a block of bits of length 56. Let DES(M, K) denote the encryption of M with key K using the DES cryptosystem. \overline{x} denotes the bitwise complement of a block x.

(a) Show that the *complementation property* holds:

$$DES(M, K) = \overline{DES(\overline{M}, \overline{K})}$$

(b) How does the complementation property help to attack DES?

Exercise 22.

Consider the following Linear Feedback Shift Register (LFSR) based stream cipher. Messages are bit sequences of arbitrary length, i.e., character sequences over the alphabet $\mathbb{F}_2 = \{0, 1\}$. Let the message be $m = m_1 m_2 \dots m_l$. Keys are also bit sequences $k = k_1 k_2 \dots k_n$ of fixed length n < l. Now, a key stream $z = z_1 z_2 \dots z_l$ is recursively generated depending on the key as following:

$$z_i = k_i, \quad 1 \le i \le n,$$

 $z_i = \sum_{j=1}^n s_j z_{i-j} \pmod{2}, \quad n < i \le l.$

The bits s_1, \ldots, s_n are fixed and given in advance. We encrypt $c_i := m_i \oplus z_i$ for $1 \le i \le l$.

- (a) How does decryption work for this cryptosystem?
- (b) What happens if $k = 00 \dots 0$ is chosen as the key?
- (c) Encrypt the message m = 101100010100110100 with n = 4, $s_2 = s_3 = 0$, $s_1 = s_4 = 1$ using the key k = 0110.
- (d) How long is the period¹ of the key stream in (c)? What is the maximal period p_{max} of an LFSR with a key of length n?

¹The period of an LFSR is defined as $p = \min\{k \in \mathbb{N} | \exists i_0 \in \mathbb{N}, i \in \mathbb{N}, \forall i \ge i_0 : z_{i+k} = z_i\}.$