Homework 8 in Cryptography I
 Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier

 09.06.2011Exercise 23. There are four so called weak DES keys. One of those is the key

$$
K=0001111100011111000111110001111100001110000011100000111000001110 .
$$

What happens if you use this key? Can you find the other three weak keys?

Exercise 24. A block cipher is a cryptosystem where plaintext and ciphertext space are the set \mathcal{A}^{n} of words of length n over an alphabet \mathcal{A}. The number n is called the block length.

Show that the encryption functions of block ciphers are permutations. How many different block ciphers exist if $\mathcal{A}=\{0,1\}$ and the block length is $n=6$?

Exercise 25. Consider the following AES-128 key given in hexadecimal notation:

$$
K=2 d 61726965007661 \text { 6e } 0043 \text { 6c } 65656666
$$

a) What is the round key K_{0} ?
b) What are the first 4 bytes of round key K_{1} ?

Exercise 26. Within the step MixColumns of the AES algorithm a vector \mathbf{r} is given by $\mathbf{r}=\mathbf{T c}$ with $\mathbf{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{\prime}, c_{i} \in \mathbb{F}_{2^{8}}[x]$, and

$$
T=\left(\begin{array}{cccc}
x & (x+1) & 1 & 1 \\
1 & x & (x+1) & 1 \\
1 & 1 & x & (x+1) \\
(x+1) & 1 & 1 & x
\end{array}\right)
$$

Show $\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right)=r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0} \bmod u^{4}+1$.

