Homework 9 in Cryptography I
 - Proposal for Solution -

Prof. Dr. Rudolf Mathar, Michael Reyer, Henning Maier
30.06.2011

Solution to Exercise 27.

Let $\varphi: \mathbb{N} \rightarrow \mathbb{N}$ the Euler φ-function, i.e., $\varphi(n)=\left|\mathbb{Z}_{n}^{*}\right|$ with $\mathbb{Z}_{n}^{*}=\left\{a \in \mathbb{Z}_{n} \mid \operatorname{gcd}(a, n)=1\right\}$.
(a) Let $n=p$ be prime. It follows
$\mathbb{Z}_{p}^{*}=\left\{a \in \mathbb{Z}_{p} \mid \operatorname{gcd}(a, p)=1\right\}=\{1,2, \ldots, p-1\} \Rightarrow \varphi(p)=p-1$.
(b) Let $n=p^{k}$ for a prime p and $k \in \mathbb{N}$. For $1 \leq a \leq p^{k}$ it holds

1) $p \not a \Rightarrow \operatorname{gcd}\left(a, p^{k}\right)=1$, and
2) p । $a \Rightarrow \operatorname{gcd}\left(a, p^{k}\right) \geq p$.

It follows $\mathbb{Z}_{p^{k}}^{*}=\underbrace{\left\{1 \leq a \leq p^{k}\right\}}_{p^{k} \text { elements }} \backslash \underbrace{\left\{1 \leq a \leq p^{k}|p| a\right\}}_{p^{k-1} \text { elements }}$. Consequently, it holds $\varphi\left(p^{k}\right)=p^{k}-p^{k-1}=p^{k-1}(p-1)$.
(c) Let $n=p q$ for two primes $p \neq q$. It holds

1) p । $a \vee q$ । $a \Rightarrow \operatorname{gcd}(a, p q)>1$, and
2) $p \nmid a \wedge q \not a a \Rightarrow \operatorname{gcd}(a, p q)=1$.

It follows
$\mathbb{Z}_{p q}^{*}=\underbrace{\{1 \leq a \leq p q-1\}}_{p q-1 \text { elements }} \backslash[\underbrace{\{1 \leq a \leq p q-1|p| a\}}_{q-1 \text { elements }} \cup \underbrace{\{1 \leq a \leq p q-1|q| a\}}_{p-1 \text { elements }}]$.
Consequently,
$\varphi(p q)=p q-1-(q-1-p-1)=p q-p-q+1=(p-1)(q-1)=\varphi(p) \varphi(q)$.
(d) $\varphi(4913)=\varphi\left(17^{3}\right) \stackrel{(\text { b) }}{=} 17^{2}(17-1)=4624$ and $\varphi(899)=\varphi\left(30^{2}-1^{2}\right)=\varphi((30-1)(30+1))=\varphi(29 \cdot 31) \stackrel{(\mathrm{c})}{=} 28 \cdot 30=840$.

Solution to Exercise 28.

(a) By the Miller-Rabin Primality Test it will be proven that 341 is composite.

Write $n=341=1+85 \cdot 2^{2}=1+q \cdot 2^{k}$.

```
Algorithm 1 Miller-Rabin Primality Test (MRPT)
    Write \(n=1+q 2^{k}, q\) odd
    Choose \(a \in\{2, \ldots, n-1\}\) uniformly distributed at random
    \(y \leftarrow a^{q} \bmod n\)
    if \((y=1) \mathrm{OR}(y=n-1)\) then
        return „ \(n\) prime"
    end if
    for \((i \leftarrow 1 ; i<k ; i++)\) do
        \(y \leftarrow y^{2} \bmod n\)
        if \((y=n-1)\) then
            return „ \(n\) prime"
        end if
    end for
    return „n composite"
```

Choose $a=2$.
Calculate $a^{q} \bmod n$, i.e., $2^{85} \bmod 341$.
Note that $2^{10}=1024=3 \cdot 341+1 \equiv 1 \bmod 341$.
It follows $2^{85}=(\underbrace{2^{10}}_{\equiv 1})^{8} \cdot \underbrace{2^{5}}_{=32} \equiv 32 \bmod 341$.
Alternatively, $2^{85} \bmod 341$ is calculated by Square and Multiply, see below. As $y=32 \notin\{1, n-1\}$ the for-loop starts with $i=1$.
$y^{2}=32^{2}=\left(2^{5}\right)^{2}=2^{10} \equiv 1 \bmod 341$, see above.
Furthermore, $y=1 \neq 340 \bmod 341$.
As $i=2=k=2$ the for-loop terminates and n is stated as composite, which is a reliable result.
(b) A number n is decomposed according to MRPT as $n=1+q 2^{k}$. It follows that MRPT has at most k squarings. The worst case occurs, if $q=1$, then $n=1+2^{k} \Leftrightarrow k=\log _{2}(n-1)$. With n having 300 digits it follows:
$n<10^{301}=(\underbrace{10^{3}}_{<2^{10}})^{100} \cdot \underbrace{10}_{<2^{4}}<2^{1004} \Rightarrow k \leq 1004$.
Consequently, less than 1004 squarings are needed. ($k \approx 999.9$)
Note, evaluating $a^{q} \bmod n$ with Square and Multiply takes t squarings. But as $2^{t} \leq q$ holds, the worst case is reached, for equality which means $t=0$, i.e., $q=1$, as otherwise q would be not odd.

Determining $2^{85} \bmod 341$ by Square and Multiply.
It holds $a=2, x=85=(1010101)_{2}$, i.e., $t=6$.

```
Algorithm 2 Square and multiply
Require: \(x=\left(x_{t}, \ldots, x_{0}\right) \in \mathbb{N}, a \in \mathbb{N}\)
Ensure: \(a^{x} \bmod n\)
    \(y \leftarrow a\)
    for \((i=t-1, i \geq 0, i--)\) do
        \(y \leftarrow y^{2} \bmod n\)
        if \(\left(x_{i}=1\right)\) then
            \(y \leftarrow y \cdot a \bmod n\)
        end if
    end for
    return \(y\)
```

The following tabular denotes the evaluation of the Square and Multiply algorithm. The table is initialized in the first line with $i=t=6$ and $y=1$. There are $t+1$ lines numbered from t down to 0 . The binary representation of $x=\left(x_{t} \ldots x_{0}\right)$ is given in column two. Using those values the columns four and five are evaluated row by row. For each row the y value is taken from the last column of the row above. The final value in the fifth column is the result of $a^{x} \bmod n$.

| i | x_{i} | y | $y^{2} \bmod n$ | $y^{2}\left(1+x_{i} \cdot(a-1)\right) \bmod n$ |
| ---: | ---: | ---: | ---: | ---: | ---: |
| 6 | 1 | 1 | 1 | 2 |
| 5 | 0 | 2 | 4 | 4 |
| 4 | 1 | 4 | 16 | 32 |
| 3 | 0 | 32 | $1024 \equiv 1 \bmod 341$ | 1 |
| 2 | 1 | 1 | 1 | 2 |
| 1 | 0 | 2 | 4 | 4 |
| 0 | 1 | 4 | 16 | 32 |

The solution is $2^{85} \equiv 32 \bmod 341$.

