Review Exercise
 Advanced Methods of Cryptography

Prof. Dr. Rudolf Mathar, Michael Reyer, Georg Böcherer, Steven Corroy, Henning Maier 01.08.2011, WSH 24 A 407, 15:30h

Problem 4.

Alice and Bob use the ElGamal signature scheme to sign messages. In order to reduce the amount of computation, Alice signs $h(m)$ (instead of signing a message m directly) with h as hash function given by

$$
h(m)=m(m+3) \bmod n,
$$

with $n=u v$ and u, v are prime numbers.
(a) List the four requirements that the function h should fulfill to be used as cryptographic hash function.
(b) Is h collision free in general?

Alice wants to sign $h(m)$ with $m=83$ using the ElGamal signature scheme. She chooses the prime number $p=101$ and the parameter $a=7$.
(c) Calculate the hash value $h(m)$ given $u=3$ and $v=19$.
(d) Which condition must be fulfilled by a, to be used in the ElGamal signature scheme? Show that $a=7$ fulfills this condition.
(e) Alice chooses the private key $x_{A}=11$ and the random secret $k=17$. Compute the signature (r, s) of $h(m)$.
(f) Bob receives a signature $(r, s)=(120,67)$ (this is not the signature from (e)). Is this signature valid?

Problem 5.

In the following, a certification and identification protocol is considered. It is an extension of the Fiat-Feige-Shamir protocol. It establishes authentication between A and B with the aid of a trusted authority server T. The utilized parameters are denoted as a public $n=p q$ of two secret, large primes p, q with $p \neq q$, A's private key $u \in \mathbb{Z}_{n}^{*}$, A 's public key $v \in \mathbb{Z}_{n}^{*}$, a random number $r \in \mathbb{Z}_{n} \backslash\{p, q\}$, a random number c and a large publicly known exponent $e \in \mathbb{Z}_{\varphi(n)}$. Furthermore, a signature algorithm S_{T} used by T, a verification algorithm V_{T}, a signature s and a public certificate $\operatorname{cert}_{T}(A)$ issued by T to A are used.

Certification and Identification Protocol

(1) A computes $v=\left(u^{-1}\right)^{e}(\bmod n)$. $A \rightarrow T: v$
(2) T computes $s=S_{T}(A, v)$ and $\operatorname{cert}_{T}(A)=(A, v, s)$. $T \rightarrow A: \operatorname{cert}_{T}(A)$
(3) A chooses a random $r \in \mathbb{Z}_{n} \backslash\{p, q\}$ and computes $x=r^{e}(\bmod n)$. $A \rightarrow B: x, \operatorname{cert}_{T}(A)$
(4) B checks $V_{T}(s)$ and matches (A, v) from $\operatorname{cert}_{T}(A)$. If both are valid, B chooses a random $c \in\{1, \ldots, e\}$. $B \rightarrow A: c$
(5) A computes $y=r u^{c}(\bmod n)$.
$A \rightarrow B: y$
(6) B verifies $x \equiv y^{e} v^{c}(\bmod n)$.

Answer the following questions with respect to this protocol.
(a) What is the purpose of the certificate $\operatorname{cert}_{T}(A)$ in this protocol?
(b) Name the two number-theoretic problems this protocol relies on.
(c) Prove that the verification works.
(d) The security of this protocol also relies on cryptographically secure random numbers. Calculate the random sequence b_{1}, \ldots, b_{t} with the Blum-Blum-Shub Generator using $x_{0}=29, n=13 \cdot 23$ and $t=5$. The given numbers are decimal. Is $x_{0}=29$ a valid initial value? Reason your statement.

Problem 6.

Consider the equation

$$
Y^{2}=X^{3}+X+3
$$

(a) Show that this equation describes an elliptic curve E over the field \mathbb{F}_{7}.
(b) Calculate all points on $E\left(\mathbb{F}_{7}\right)$. What is the order of $E\left(\mathbb{F}_{7}\right)$?
(c) For each point on $E\left(\mathbb{F}_{7}\right)$, calculate its inverse.
(d) For each point on $E\left(\mathbb{F}_{7}\right)$, calculate its order.
(e) Is the group $E\left(\mathbb{F}_{7}\right)$ cyclic?
(f) Find all solutions of the equation $4 P=\mathcal{O}$ in $E\left(\mathbb{F}_{7}\right)$.

