Homework 1 in Cryptography
 Prof. Dr. Rudolf Mathar, Marcus Rothe, Milan Zivkovic 17.04.2014

Exercise 1.

(a) Compute the multiplicative inverse of 357 modulo $1234\left(357^{-1} \bmod 1234\right)$.
(b) A polynomial $a(x)$ is a multiplicative inverse of $b(x)$ modulo $m(x)$ such that $b(x) \cdot a(x) \equiv 1 \bmod m(x)$. In $\frac{\mathbb{Z}_{2}(x)}{m(x)}$, where $m(x)=x^{5}+x^{3}+1$, compute the multiplicative inverse of $b(x)=x^{3}+x+1$.

Hint: + is the modulo 2 addition.
Hint: Apply the Extended Euclidean Algorithm (Section 6.3 in the script).

Exercise 2. Let $a, b, c, d \in \mathbb{Z} . a$ is said to divide b if (and only if) there exists some $k \in \mathbb{Z}$ such that $a \cdot k=b$. Notation: $a \mid b$. Prove the following implications:
(a) $a \mid b$ and $b|c \Rightarrow a| c$.
(b) $a \mid b$ and $c|d \quad \Rightarrow \quad(a c)|(b d)$.
(c) $a \mid b$ and $a|c \Rightarrow a|(x b+y c) \forall x, y \in \mathbb{Z}$.

Exercise 3. Use the Ceasar cipher with key $k=13$ to encrypt the word

CRYPTOGRAPHY

Hint: first, map the characters to their numeric representation, e.g., ' C ' $\rightarrow 3$.

