

Homework 1 in Cryptography Prof. Dr. Rudolf Mathar, Marcus Rothe, Milan Zivkovic 17.04.2014

Exercise 1.

RNTHAACHE

- (a) Compute the multiplicative inverse of 357 modulo 1234 (357^{-1} mod 1234).
- (b) A polynomial a(x) is a multiplicative inverse of b(x) modulo m(x) such that $b(x) \cdot a(x) \equiv 1 \mod m(x)$. In $\frac{\mathbb{Z}_2(x)}{m(x)}$, where $m(x) = x^5 + x^3 + 1$, compute the multiplicative inverse of $b(x) = x^3 + x + 1$.

Hint: + *is the modulo 2 addition. Hint: Apply the Extended Euclidean Algorithm (Section 6.3 in the script).*

Exercise 2. Let $a, b, c, d \in \mathbb{Z}$. a is said to divide b if (and only if) there exists some $k \in \mathbb{Z}$ such that $a \cdot k = b$. Notation: $a \mid b$. Prove the following implications:

(a) $a \mid b \text{ and } b \mid c \implies a \mid c.$ (b) $a \mid b \text{ and } c \mid d \implies (ac) \mid (bd).$ (c) $a \mid b \text{ and } a \mid c \implies a \mid (xb + yc) \quad \forall x, y \in \mathbb{Z}.$

Exercise 3. Use the Ceasar cipher with key k = 13 to encrypt the word

CRYPTOGRAPHY

Hint: first, map the characters to their numeric representation, e.g., $C' \rightarrow 3$ *.*