Homework 4 in Cryptography
 Prof. Dr. Rudolf Mathar, Markus Rothe, Milan Zivkovic

 22.05.2014Exercise 13. Let X, Y be discrete random variables on a set Ω.
a) Show that for any function $f: X(\Omega) \times Y(\Omega) \rightarrow \mathbb{R}$, the relationship

$$
H(X, Y, f(X, Y))=H(X, Y)
$$

holds.

Exercise 14. Let $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ be a cryptosystem. Suppose that $P(\hat{M}=M)>0$ for all $M \in \mathcal{M}, P(\hat{K}=K)>0$ for all $K \in \mathcal{K}$ and $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$ holds. Show that if $(\mathcal{M}, \mathcal{K}, \mathcal{C}, e, d)$ has perfect secrecy, then

$$
P(\hat{K}=K)=\frac{1}{|\mathcal{K}|} \text { for all } K \in \mathcal{K}
$$

and for all $M \in \mathcal{M}, C \in \mathcal{C}$, there is a unique $K \in \mathcal{K}$ such that $e(M, K)=C$.

Exercise 15. Let $\mathcal{M}=\{a, b\}$ be the message space, $\mathcal{K}=\left\{K_{1}, K_{2}, K_{3}\right\}$ the key space and $\mathcal{C}=\{1,2,3,4\}$ the ciphertext space. Let \hat{M}, \hat{K} be stochastically independent random variables with support \mathcal{M} and \mathcal{K}, respectively, and with probability distributions:

$$
P(\hat{M}=a)=\frac{1}{4}, P(\hat{M}=b)=\frac{3}{4}, P\left(\hat{K}=K_{1}\right)=\frac{1}{2}, P\left(\hat{K}=K_{2}\right)=\frac{1}{4}, P\left(\hat{K}=K_{3}\right)=\frac{1}{4} .
$$

The following table explains the encryption rules:

$$
\begin{array}{l|lll}
& K_{1} & K_{2} & K_{3} \\
\hline a & 1 & 2 & 3 \\
b & 2 & 3 & 4
\end{array}, \text { e.g., } e\left(a, K_{1}\right)=1 .
$$

a) Compute the entropies $H(\hat{M}), H(\hat{K}), H(\hat{C})$ and the key equivocation $H(\hat{K} \mid \hat{C})$.
b) Why does this cryptosystem not have perfect secrecy?

Exercise 16. Consider affine ciphers on \mathbb{Z}_{26}, i.e., $\mathcal{M}=\mathcal{C}=\mathbb{Z}_{26}$ and $\mathcal{K}=\mathbb{Z}_{26}^{*} \times \mathbb{Z}_{26}=\left\{(a, b) \mid a, b \in \mathbb{Z}_{26}, \operatorname{gcd}(a, 26)=1\right\}$. Select the key \hat{K} uniformly distributed at random and independently from the message \hat{M}.

Show that this cryptosystem has perfect secrecy.

