

Homework 8 in Cryptography Prof. Dr. Rudolf Mathar, Markus Rothe, Milan Zivkovic 11.07.2014

Exercise 28. We examine the properties of the discrete logarithm.

- (a) Compute the discrete logarithm of 18 and 1 in the group \mathbb{Z}_{79}^* with generator 3 (by trial and error if necessary).
- (b) How many trails would be necessary to determine the discrete logarithm in the worst case?

Exercise 29. Prove Proposition 7.5 from the lecture, which gives a possibility to generate a primitive element modulo n:

Let p > 3 be prime, $p - 1 = \prod_{i=1}^{k} p_i^{t_i}$ the prime factorization of p - 1. Then $a \in \mathbb{Z}_p^*$ is a primitive element modulo $p \Leftrightarrow a^{\frac{p-1}{p_i}} \not\equiv 1 \pmod{p}$ for all $i \in \{1, \ldots, k\}$.

Exercise 30. Alice and Bob perform a Diffie-Hellman key exchange with prime p = 107 and primitive element a = 2. Alice chooses the random number $x_A = 66$ and Bob the random number $x_B = 33$.

- (a) Calculate the shared key for both users.
- (b) Show that b = 103 is also a primitive element mod p.