

Homework 9 in Cryptography Prof. Dr. Rudolf Mathar, Markus Rothe, Milan Zivkovic 17.07.2014

Exercise 31. Alice and Bob are using Shamir's no-key protocol to exchange a secret message. They agree to use the prime p = 31337 for their communication. Alice chooses the random number a = 9999 while Bob chooses b = 1011. Alice's message is m = 3567.

(a) Calculate all exchanged values c_1 , c_2 , and c_3 following the protocol. **Hint**: You may use $6399^{1011} \equiv 29872 \pmod{31337}$.

Exercise 32. Prove proposition 8.3 from the lecture notes: Let n = pq, $p \neq q$ prime and x a nontrivial solution of $x^2 \equiv 1 \mod n$, i.e., $x \not\equiv \pm 1 \mod n$. Then

$$gcd(x+1,n) \in \{p,q\}.$$

Exercise 33. Alice and Bob are using the ElGamal cryptosystem. The public key of Alice is (p, a, y) = (3571, 2, 2905). Bob encrypts the messages m_1 and m_2 as

 $C_1 = (1537, 2192)$ and $C_2 = (1537, 1393)$.

- (a) Show that the public key is valid.
- (b) What did Bob do wrong?

RNNTHAACHE

(c) The first message is given as $m_1 = 567$. Determine the message m_2 .