Homework 9 in Cryptography
Prof. Dr. Rudolf Mathar, Markus Rothe, Milan Zivkovic 17.07.2014

Exercise 31. Alice and Bob are using Shamir's no-key protocol to exchange a secret message. They agree to use the prime $p=31337$ for their communication. Alice chooses the random number $a=9999$ while Bob chooses $b=1011$. Alice's message is $m=3567$.
(a) Calculate all exchanged values c_{1}, c_{2}, and c_{3} following the protocol.

Hint: You may use $6399^{1011} \equiv 29872(\bmod 31337)$.

Exercise 32. Prove proposition 8.3 from the lecture notes: Let $n=p q, p \neq q$ prime and x a nontrivial solution of $x^{2} \equiv 1 \bmod n$, i.e., $x \not \equiv \pm 1 \bmod n$. Then

$$
\operatorname{gcd}(x+1, n) \in\{p, q\}
$$

Exercise 33. Alice and Bob are using the ElGamal cryptosystem. The public key of Alice is $(p, a, y)=(3571,2,2905)$. Bob encrypts the messages m_{1} and m_{2} as

$$
\mathbf{C}_{1}=(1537,2192) \text { and } \mathbf{C}_{2}=(1537,1393) .
$$

(a) Show that the public key is valid.
(b) What did Bob do wrong?
(c) The first message is given as $m_{1}=567$. Determine the message m_{2}.

