

Problem 4. (decipher classical cryptosystem) The following ciphertext is given:

rgneidvgpewn xh iwt hijsn du bpiwtbpixrpa itrwcxfjth gtapits id phetrih du xcudgbpixdc htrjgxin hjrw ph rdcuxstcixpaxin, spip xcitvgxin, tcixin pjiwtcixrpixdc, pcs spip dgxvxc pjiwtcixrpixdc.

- a) Why is this ciphertext easy to decrypt?
- **b**) Decipher the given ciphertext. What is the secret key?

Hint: The plaintext is an English text.

RWTHAACHEN

Problem 5. (properties of the greatest common divisor)

Show the following properties for the greatest common divisor.

- **a)** Prove that: $a \in \mathbb{Z}_m$ invertible $\Leftrightarrow \gcd(a, m) = 1$.
- **b)** Let $a, b \in \mathbb{Z}$ with $b \neq 0$ and $q, r \in \mathbb{Z}$ and a = bq + r and $0 \leq r < b$. Show that: gcd(a, b) = gcd(b, r).
- c) Show that $\mathbb{Z}_m^* = \{b \in \mathbb{Z}_m \mid \gcd(b, m) = 1\}$ is a multiplicative group.

Hint 1: For any $a, b \in \mathbb{Z}$, there exist $x, y \in \mathbb{Z}$ such that gcd(a, b) = ax + by.

Hint 2: For any $a, b \in \mathbb{Z}$ with $gcd(a, b) = 1 \Rightarrow gcd(a \cdot b, m) = gcd(a, m) \cdot gcd(b, m)$.

Hint 3: The definition of a multiplicative group is given in Appendix A.1 of the script.

Problem 6. (*number of keys*) Compute the number of possible keys for the following cryptosystems:

- a) Substitution cipher with the alphabet $\Sigma = \mathbb{Z}_l = \{0, \dots, l-1\}$
- **b)** Affine cipher with the alphabet $\Sigma = \mathbb{Z}_{26} = \{0, \dots, 25\}$
- c) Permutation cipher with a fixed blocklength L