

Problem 10. (weak permutations) The permutation $\pi = (1)(2, 11, 5, 8)(3, 6, 7, 4)(9, 10)$ defines a permutation cipher with block length k = 11.

(a) Determine the number of character sequences of length 11 over the usual alphabet with 26 letters whose ciphertext is equal to the plaintext.

Hint: (2, 11, 5, 8) means that position 2 is moved to position 11, 11 to 5, 5 to 8 and 8 to 2.

Problem 11. (properties of entropy)

RNNTHAACHEN

Let X, Y be random variables with support $\mathcal{X} = \{x_1, \ldots, x_m\}$ and $\mathcal{Y} = \{y_1, \ldots, y_d\}$. Assume that X, Y are distributed by $P(X = x_i) = p_i$ and $P(Y = y_j) = q_j$. Let (X, Y) be the corresponding two-dimensional random variable with distribution $P(X = x_i, Y = y_j) = p_{ij}$. Prove the following statements from Theorem 4.3:

- (a) $0 \le H(X)$ with equality if and only if $P(X = x_i) = 1$ for some *i*.
- (b) $H(X) \leq \log m$ with equality if and only if $P(X = x_i) = \frac{1}{m}$ for all *i*.
- (c) $H(X \mid Y) \leq H(X)$ with equality if and only if X and Y are stochastically independent (conditioning reduces entropy).
- (d) $H(X,Y) = H(X) + H(Y \mid X)$ (chain rule of entropies).
- (e) $H(X,Y) \leq H(X) + H(Y)$ with equality iff X and Y are stochastically independent.

Hint (a): $\ln z \le z - 1$ for all z > 0 with equality if and only if z = 1. **Hint** (b), (c): If f is a convex function, the Jensen inequality $f(E(X)) \le E(f(X))$ holds.

Problem 12. (entropy of function) Let X, Y be discrete random variables on a set Ω . Show that for any function $f: X(\Omega) \times Y(\Omega) \to \mathbb{R}$, it holds:

$$H(X, Y, f(X, Y)) = H(X, Y)$$