Exercise 6 in Cryptography
Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo 2015-06-11

Problem 16. (block ciphers are permutations) A block cipher is a cryptosystem where both plaintext and ciphertext space are the set \mathcal{A}^{n} of words of length n over an alphabet \mathcal{A}.
a) Show that the encryption functions of block ciphers are permutations.
b) How many different block ciphers exist if $\mathcal{A}=\{0,1\}$ and the block length is $n=6$?

Problem 17. (weak DES keys) There are four so called weak DES keys. One of those keys is

$$
K=0001111100011111000111110001111100001110000011100000111000001110 .
$$

a) What happens if you use this key?
b) Can you find the other three weak keys?

Problem 18. (DES Complementation property) Let M be a block of bits of length 64 and let K be a block of bits of length 56 . Let $\operatorname{DES}(M, K)$ denote the encryption of M with key K using the DES cryptosystem. \bar{x} denotes the bitwise complement of a block x.
a) Show that the complementation property holds:

$$
\operatorname{DES}(M, K)=\overline{\operatorname{DES}(\bar{M}, \bar{K})}
$$

b) How does the complementation property help to attack DES?

Problem 19. (AES mix columns) The step MixColumns of the AES scheme is given by $\boldsymbol{r}=\boldsymbol{T} \boldsymbol{c}$ with input $\boldsymbol{c}=\left(c_{0}, c_{1}, c_{2}, c_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$, output $\boldsymbol{r}=\left(r_{0}, r_{1}, r_{2}, r_{3}\right)^{\prime} \in \mathbb{F}_{2^{8}}^{4}$, and the circulant matrix

$$
\boldsymbol{T}=\left(\begin{array}{cccc}
x & (x+1) & 1 & 1 \\
1 & x & (x+1) & 1 \\
1 & 1 & x & (x+1) \\
(x+1) & 1 & 1 & x
\end{array}\right) \in \mathbb{F}_{2^{8}}^{4 \times 4}
$$

for the polynomial field $\mathbb{F}_{2^{8}}=\mathbb{F}_{2}[X] /\left(x^{8}+x^{4}+x^{3}+x+1\right) \mathbb{F}_{2}[X]$.
Show $\left(c_{3} u^{3}+c_{2} u^{2}+c_{1} u+c_{0}\right)\left((x+1) u^{3}+u^{2}+u+x\right) \bmod \left(u^{4}+1\right)=r_{3} u^{3}+r_{2} u^{2}+r_{1} u+r_{0}$.

