

Problem 36. (*baby-step giant-step algorithm*) Consider the following algorithm to compute the discrete logarithm:

Algorithm 1 Baby-step Giant-step Algorithm

Require: p prime, α is a primitive element mod p, $\beta = \alpha^x \mod p$ for an unknown $x \in \{0, \ldots, p-1\}$ Ensure: $x = \log_{\alpha} \beta$,

(1) $x = \log_{\alpha} \beta$

RNNTHAACHE

- (1) $m \leftarrow \lceil \sqrt{p} \rceil$
- (2) Compute a table of *baby-steps* $b_j = \alpha^j \mod p$ for all indices $j \in \mathbb{Z}$ with $0 \leq j < m$.
- (3) Compute a table of giant-steps $g_i = \beta \alpha^{-im} \mod p$ for indices $i \in \mathbb{Z}$ with $0 \le i < m$, until you find a pair (i, j) such that $b_j = g_i$ holds.

return $x \equiv mi + j \mod p - 1$.

- a) Prove that the given algorithm calculates the discrete logarithm.
- **b)** Why is α a primitive element modulo p?
- c) Compute the discrete log for $\alpha^x \equiv \beta \mod p$ with $\alpha = 3$, $\beta = 13$ and p = 29 using the given algorithm.

Remark: The *ceiling-function* is defined as $\lceil x \rceil = \min\{k \in \mathbb{Z} \mid k \ge x\}$.

Problem 37. (Weak public-key cryptosystem) Consider the following insecure cryptosystem: Alice secretly chooses four integers $a, b, a', b' \in \mathbb{N}$, with a > 1, b > 1, and computes:

$$M = ab - 1,$$
 $e = a'M + a,$ $d = b'M + b,$ $n = \frac{ed - 1}{M}.$

Her public key is (n, e), her private key is d. To encrypt a plaintext m, Bob uses the map $c = em \mod n$. Alice decrypts the ciphertext received from Bob by $m = cd \mod n$.

- a) Verify that the decryption operation recovers the plaintext.
- b) How can the Euclidean algorithm be applied to break the cryptosystem.

Problem 38. (*How not to use the ElGamal cryptoystem*) Alice and Bob are using the ElGamal cryptosystem. The public key of Alice is (p, a, y) = (3571, 2, 2905). Bob encrypts the messages m_1 and m_2 as

 $C_1 = (1537, 2192)$ and $C_2 = (1537, 1393)$.

- a) Show that the public key is valid.
- **b)** What did Bob do wrong?
- c) The first message is given as $m_1 = 567$. Determine the message m_2 .