Lehrstuhl für Theoretische Informationstechnik

Exercise 2 in Cryptography - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo2015-04-23

Solution of Problem 4

- a) Decryption is easy because:
 - The text structure is visible: spaces and punctuation marks are not encrypted, we can guess the grammatical structure of the text, etc.
 - The language of the plaintext is known
 - Some words occur several times in the ciphertext, e.g., "du", "spip" and "pjiwtcxrpixdc" \Rightarrow monoalphabetic \Rightarrow ceasar/substitution cipher
- **b)** Assume Caesar cipher and try to decrypt short words with different keys 1, 2, ... until you obtain a meaningful word:

 $xh \rightarrow yi$, zj, ak, bl, cm, dn, eo, fp, gq, hr, isiwt $\rightarrow jxu$, ..., <u>the</u> pjiwtcixrpixdc $\rightarrow qjkxudjysqjyed$,...,<u>authentication</u> In all 3 cases, we add 11 to decrypt.

Other suitable candidates for short words are for example "du", "id", "ph", "spip", or "pcs". Otherwise, it is reasonable to guess that $xh \rightarrow is$ from the grammatical structure.

Frequency Analysis:

А	В	С	D	Е	F	G	Η	Ι	J	Ν	Р	R	\mathbf{S}	Т	U	V	W	Х
3	3	13	10	3	1	7	8	25	6	7	18	9	6	13	4	3	7	18
Check ETAOIN: I \rightarrow T, P \rightarrow A, X \rightarrow I, C \rightarrow N, T \rightarrow E, D \rightarrow O																		
Letters IPXCTD comprise $\frac{97}{164} \approx 59\%$ of the ciphertext.																		

It follows that the Caesar cipher is used with the (secret) encryption key:

 $k=-11\equiv 15\mod 26$

Decryption is performed by:

$$d(c_i) = (c_i - k) \mod 26$$

The plaintext yields: cryptography is the study of mathematical techniques ... (see *Introduction*, quotation in the lecture notes).

Solution of Problem 5

a) Prove that: $a \in \mathbb{Z}_m$ is invertible $\Leftrightarrow \gcd(a, m) = 1$. " \Rightarrow ": Show that if a is invertible, then $\gcd(a, m) = 1$. Assume a^{-1} exists:

$$\begin{split} x &\equiv a^{-1} \mod m \\ \Rightarrow & ax \equiv 1 \mod m \\ \Rightarrow & m \mid (ax - 1) \\ \Rightarrow & ax - 1 = bm, \quad \exists b \in \mathbb{Z} \\ \Rightarrow & ax - bm = 1 = n \left(\underbrace{\frac{ax}{n}}_{\in \mathbb{Z}} - \underbrace{\frac{bm}{n}}_{\in \mathbb{Z}}\right), \quad n \in \mathbb{N} \\ \xrightarrow{\Rightarrow n = 1} \Rightarrow \gcd(a, m) = 1 \checkmark \end{split}$$

" \Leftarrow ": Show that the inverse *a* modulo *m* exists if gcd(a, m) = 1.

gcd(a, m) = 1 $\Rightarrow ax + bm = 1, \quad \exists x, b \in \mathbb{Z} \text{ from the Ext. Euclidean Alg.}$ $\Rightarrow ax - 1 = bm$ $\Rightarrow m \mid (ax - 1)$ $\Rightarrow ax \equiv 1 \mod m$ $\Rightarrow x \equiv a^{-1} \mod m \checkmark$

b) Show that: gcd(a, b) = gcd(b, r) holds for the given conditions.

$$gcd(a,b) = gcd(bq+r,b) \stackrel{(1)}{=} gcd(r,b) = gcd(b,r).$$

To show (1), set gcd(a, b) = d and gcd(b, r) = e:

$$d|a \wedge d|b \Rightarrow d|(a - bq) \Rightarrow d|r$$

$$\Rightarrow \text{Since } \gcd(b, r) = e \Rightarrow d \le e$$

$$e|b \wedge e|r \Rightarrow e|(bq+r) \Rightarrow e|a$$

 \Rightarrow Since $gcd(a,b) = d \Rightarrow e \leq d$

These two properties yield e = d.

- c) Properties of a multiplicative group with $a, b, c \in \mathbb{Z}_m^*$ are fulfilled:
 - Closure (Multiplication):

$$(aa^{-1})(bb^{-1}) \equiv 1 \mod m$$

$$\Rightarrow (ab)(a^{-1}b^{-1}) \equiv 1 \mod m$$

$$\Rightarrow (ab)(ab)^{-1} \equiv 1 \mod m$$

$$\Rightarrow (ab)^{-1} \in \mathbb{Z}_m^* \checkmark$$

• Commutativity: $ab = ba \in \mathbb{Z}_m^*$. \checkmark

- Associativity: $(ab)c = abc = a(bc) \in \mathbb{Z}_m^* \checkmark$
- Neutral element $1 \in \mathbb{Z}_m^*$: $1 \cdot a = a \cdot 1 = a$, for all $a \in \mathbb{Z}_m^*$.
- Inverse element a^{-1} : $\exists a^{-1} \in \mathbb{Z}_m^*$, since gcd(a, m) = 1 for all $a \in \mathbb{Z}_m^*$.

Solution of Problem 6

- a) Substitution cipher: Keys are permutations over the symbol alphabet $\Sigma = \{x_0, ..., x_{l-1}\}$. \Rightarrow As known from combinatorics, there are *l*! permutations, i.e., *l*! possible keys.
- **b)** Affine cipher with key (b, a) and with symbols in alphabet \mathbb{Z}_{26} :

$$c_i = (a \cdot m_i + b) \mod 26$$
$$m_i = a^{-1} \cdot (c_i - b) \mod 26$$

For a valid decryption a^{-1} must exist. a^{-1} exists if gcd(a, 26) = 1 holds $\Rightarrow a \in \mathbb{Z}_{26}^*$. 26 has only 2 dividers as $26 = 13 \cdot 2$ is its prime factorization.

$$\mathbb{Z}_{26}^* = \{ a \in \mathbb{Z}_{26} \mid \gcd(a, 26) = 1 \} = \{ 1, 3, 5, 7, 9, 11, 15, 17, 19, 21, 23, 25 \} \subset \mathbb{Z}_{26}$$

 $\Rightarrow |\mathbb{Z}_{26}^*| = 12$ possible keys for a.

There is no restriction on $b \in \mathbb{Z}_{26}$, i.e., $|\mathbb{Z}_{26}| = 26$ possible keys for b. Altogether, we have $|\mathbb{Z}_{26} \times \mathbb{Z}_{26}^*| = |\mathbb{Z}_{26}| \cdot |\mathbb{Z}_{26}^*| = 26 \cdot 12 = 312$ possible keys (a, b).

c) Permutation cipher with block length $L \Rightarrow L!$ permutations $\Rightarrow L!$ possible keys.