Exercise 2 in Cryptography
 - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo 2015-04-23

Solution of Problem 4

a) Decryption is easy because:

- The text structure is visible: spaces and punctuation marks are not encrypted, we can guess the grammatical structure of the text, etc.
- The language of the plaintext is known
- Some words occur several times in the ciphertext, e.g., "du", "spip" and "pjiwtcxrpixdc" \Rightarrow monoalphabetic \Rightarrow ceasar/substitution cipher
b) Assume Caesar cipher and try to decrypt short words with different keys $1,2, \ldots$ until you obtain a meaningful word:
xh \rightarrow yi, zj, ak, bl, cm, dn, eo, fp, gq, hr, is
iwt \rightarrow jxu, ..., the
pjiwtcixrpixdc \rightarrow qjkxudjysqjyed,..., authentication
In all 3 cases, we add 11 to decrypt.
Other suitable candidates for short words are for example "du", "id", "ph", "spip", or "pcs". Otherwise, it is reasonable to guess that $\mathrm{xh} \rightarrow$ is from the grammatical structure.

Frequency Analysis:

A	B	C	D	E	F	G	H	I	J	N	P	R	S	T	U	V	W	X
3	3	13	10	3	1	7	8	25	6	7	18	9	6	13	4	3	7	18

Check ETAOIN: $\mathrm{I} \rightarrow \mathrm{T}, \mathrm{P} \rightarrow \mathrm{A}, \mathrm{X} \rightarrow \mathrm{I}, \mathrm{C} \rightarrow \mathrm{N}, \mathrm{T} \rightarrow \mathrm{E}, \mathrm{D} \rightarrow \mathrm{O}$
Letters IPXCTD comprise $\frac{97}{164} \approx 59 \%$ of the ciphertext.
It follows that the Caesar cipher is used with the (secret) encryption key:

$$
k=-11 \equiv 15 \quad \bmod 26
$$

Decryption is performed by:

$$
d\left(c_{i}\right)=\left(c_{i}-k\right) \bmod 26
$$

The plaintext yields: cryptography is the study of mathematical techniques ... (see Introduction, quotation in the lecture notes).

Solution of Problem 5

a) Prove that: $a \in \mathbb{Z}_{m}$ is invertible $\Leftrightarrow \operatorname{gcd}(a, m)=1$. $" \Rightarrow "$ Show that if a is invertible, then $\operatorname{gcd}(a, m)=1$. Assume a^{-1} exists:

$$
\begin{aligned}
& x \equiv a^{-1} \quad \bmod m \\
\Rightarrow & a x \equiv 1 \quad \bmod m \\
\Rightarrow & m \mid(a x-1) \\
\Rightarrow & a x-1=b m, \quad \exists b \in \mathbb{Z} \\
\Rightarrow & a x-b m=1=n \underbrace{}_{\underbrace{\left(\frac{a x}{n}\right.}_{\in \mathbb{Z}}-\underbrace{\frac{b m}{n}}_{\in \mathbb{Z}})}, n \in \mathbb{N} \\
\Rightarrow & n=1 \Rightarrow \operatorname{gcd}(a, m)=1 \checkmark
\end{aligned}
$$

$" \Leftarrow "$: Show that the inverse a modulo m exists if $\operatorname{gcd}(a, m)=1$.

$$
\begin{aligned}
& \operatorname{gcd}(a, m)=1 \\
\Rightarrow & a x+b m=1, \quad \exists x, b \in \mathbb{Z} \text { from the Ext. Euclidean Alg. } \\
\Rightarrow & a x-1=b m \\
\Rightarrow & m \mid(a x-1) \\
\Rightarrow & a x \equiv 1 \quad \bmod m \\
\Rightarrow & x \equiv a^{-1} \quad \bmod m
\end{aligned}
$$

b) Show that: $\operatorname{gcd}(a, b)=\operatorname{gcd}(b, r)$ holds for the given conditions.

$$
\operatorname{gcd}(a, b)=\operatorname{gcd}(b q+r, b) \stackrel{(1)}{=} \operatorname{gcd}(r, b)=\operatorname{gcd}(b, r) .
$$

To show (1), set $\operatorname{gcd}(a, b)=d$ and $\operatorname{gcd}(b, r)=e$:

$$
\begin{array}{r}
\quad d|a \wedge d| b \Rightarrow d|(a-b q) \Rightarrow d| r \\
\Rightarrow \text { Since } \operatorname{gcd}(b, r)=e \Rightarrow d \leq e \\
\quad e|b \wedge e| r \Rightarrow e|(b q+r) \Rightarrow e| a \\
\Rightarrow \text { Since } \operatorname{gcd}(a, b)=d \Rightarrow e \leq d
\end{array}
$$

These two properties yield $e=d$.
c) Properties of a multiplicative group with $a, b, c \in \mathbb{Z}_{m}^{*}$ are fulfilled:

- Closure (Multiplication):

$$
\begin{aligned}
& \left(a a^{-1}\right)\left(b b^{-1}\right) \equiv 1 \quad \bmod m \\
\Rightarrow & (a b)\left(a^{-1} b^{-1}\right) \equiv 1 \quad \bmod m \\
\Rightarrow & (a b)(a b)^{-1} \equiv 1 \quad \bmod m \\
\Rightarrow & (a b)^{-1} \in \mathbb{Z}_{m}^{*} \checkmark
\end{aligned}
$$

- Commutativity: $a b=b a \in \mathbb{Z}_{m}^{*}$. \checkmark
- Associativity: $(a b) c=a b c=a(b c) \in \mathbb{Z}_{m}^{*} \checkmark$
- Neutral element $1 \in \mathbb{Z}_{m}^{*}: 1 \cdot a=a \cdot 1=a$, for all $a \in \mathbb{Z}_{m}^{*}$. \checkmark
- Inverse element $a^{-1}: \exists a^{-1} \in \mathbb{Z}_{m}^{*}$, since $\operatorname{gcd}(a, m)=1$ for all $a \in \mathbb{Z}_{m}^{*}$. \checkmark

Solution of Problem 6

a) Substitution cipher: Keys are permutations over the symbol alphabet $\Sigma=\left\{x_{0}, \ldots, x_{l-1}\right\}$. \Rightarrow As known from combinatorics, there are l ! permutations, i.e., l! possible keys.
b) Affine cipher with key (b, a) and with symbols in alphabet \mathbb{Z}_{26} :

$$
\begin{aligned}
c_{i} & =\left(a \cdot m_{i}+b\right) \bmod 26 \\
m_{i} & =a^{-1} \cdot\left(c_{i}-b\right) \bmod 26
\end{aligned}
$$

For a valid decryption a^{-1} must exist. a^{-1} exists if $\operatorname{gcd}(a, 26)=1$ holds $\Rightarrow a \in \mathbb{Z}_{26}^{*}$. 26 has only 2 dividers as $26=13 \cdot 2$ is its prime factorization.

$$
\mathbb{Z}_{26}^{*}=\left\{a \in \mathbb{Z}_{26} \mid \operatorname{gcd}(a, 26)=1\right\}=\{1,3,5,7,9,11,15,17,19,21,23,25\} \subset \mathbb{Z}_{26}
$$

$\Rightarrow\left|\mathbb{Z}_{26}^{*}\right|=12$ possible keys for a.
There is no restriction on $b \in \mathbb{Z}_{26}$, i.e., $\left|\mathbb{Z}_{26}\right|=26$ possible keys for b.
Altogether, we have $\left|\mathbb{Z}_{26} \times \mathbb{Z}_{26}^{*}\right|=\left|\mathbb{Z}_{26}\right| \cdot\left|\mathbb{Z}_{26}^{*}\right|=26 \cdot 12=312$ possible keys (a, b).
c) Permutation cipher with block length $L \Rightarrow L$! permutations $\Rightarrow L$! possible keys.

