



# Exercise 3 in Cryptography - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo 2015-04-30

# **Solution of Problem 7**

The first step is to perform a frequency analysis. The frequency analysis consists of counting the number of appearances of each letter and the number of ordered pairs as follows:

| i  | Character | $k_i$ | $p_i$ |
|----|-----------|-------|-------|
| 0  | A         | 1     | 0     |
| 1  | В         | 4     | 6     |
| 2  | С         | 12    | 66    |
| 3  | D         | 4     | 6     |
| 4  | E         | 2     | 1     |
| 5  | F         | 1     | 0     |
| 6  | G         | 6     | 15    |
| 7  | Н         | 2     | 1     |
| 8  | I         | 7     | 21    |
| 9  | J         | 2     | 1     |
| 10 | K         | 14    | 91    |
| 11 | L         | 7     | 21    |
| 12 | M         | 1     | 0     |

| i  | Character | $k_i$ | $p_i$ |
|----|-----------|-------|-------|
| 13 | N         | 3     | 3     |
| 14 | О         | 4     | 6     |
| 15 | Р         | 4     | 6     |
| 16 | Q         | 4     | 6     |
| 17 | R         | 10    | 45    |
| 18 | S         | 4     | 6     |
| 19 | Т         | 0     | 0     |
| 20 | U         | 0     | 0     |
| 21 | V         | 9     | 36    |
| 22 | W         | 6     | 15    |
| 23 | X         | 8     | 28    |
| 24 | Y         | 3     | 3     |
| 25 | Z         | 0     | 0     |

- $k_i$  the total number of ocurrences of each letter
- $p_i$  the number of ordered pairs calculated as  $p_i = \binom{k_i}{2}$

The next step is to calculate the total length of the ciphertext using that the text is divided in blocks:

$$n = 14 \cdot 8 + 6 = 118 \tag{1}$$

Now we have to use the formula of the index of coincidence as follows (Def: 3.1, page 13, lecture notes):

$$I_C = \frac{|\{i, j\}|C_i = C_j, 1 \le i < j \le n\}|}{\binom{n}{2}} = \frac{\sum_{i=0}^{25} \binom{k_i}{2}}{\binom{n}{2}}$$
(2)

For 2, we calculate all the possible pair of combinations of n symbols as:

$$\binom{n}{2} = \frac{n!}{(n-2)! \ 2!} = \frac{n(n-1)}{2!} = \frac{118 \cdot 117}{2} = 6903 \tag{3}$$

Therefore, substituting in 2, we have:

$$I_C = \frac{6 \cdot 0 + 3 \cdot 1 + 2 \cdot 3 + 6 \cdot 6 + 2 \cdot 15 + 2 \cdot 21 + 1 \cdot 28 + 1 \cdot 36 + 1 \cdot 45 + 1 \cdot 66 + 1 \cdot 91}{6093}$$
$$= \frac{383}{6903} = 0.055483 \tag{4}$$

Using the hint of the exercise, we can assume that the text is monoalphabetic and probably in English, because the index of coincidence obtained is close to its value.

### **Solution of Problem 8**

a) We have the auto-key cryptosystem:

$$c_i = \begin{cases} m_i + k_i \pmod{26} & 0 \le i \le n - 1\\ m_i + c_{i-n} \pmod{26} & n \le i \le l - 1 \end{cases}$$

Using a ciphertext only attack, we can compute the message as follows:

$$c_n = m_n + c_0 \iff m_n = c_n - c_0$$

$$c_{n+1} = m_{n+1} + c_1 \iff m_{n+1} = c_{n+1} - c_1$$

$$\implies m_{n+j} = c_{n+j} - c_j$$

Therefore, the next task is to determine n

b) Using the result from a) we decipher the following text, just shifting the ciphertext along itself:

For n=1

| D | L | G | V | $\mid T \mid$ | Y | О | Α | $\mid C \mid$ | О | U | V | С | Е | $\mathbf{Z}$ | Α |   |
|---|---|---|---|---------------|---|---|---|---------------|---|---|---|---|---|--------------|---|---|
|   | D | L | G | V             | Т | Y | О | Α             | С | О | U | V | С | Е            | Z | A |
|   | I | V | Р |               |   |   |   |               |   |   |   |   |   |              |   |   |

For n=2

| D | L | G | V | Т | Y | О | A | С | О | U | V | С | Е | Z | Α |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   | D | L | G | V | T | Y | О | Α | С | О | U | V | С | Ε | Z | A |
|   |   | D | K | N |   |   |   |   |   |   |   |   |   |   |   |   |   |

For n=3

| I | ) | L | G | V | Т | Y | О | A | С | О | U | V | С | Е | Z | A |   |   |   |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|   |   |   |   | D | L | G | V | Т | Y | О | A | С | О | U | V | С | Е | Z | A |
|   |   |   |   | S | Ι | S | Т | Н | E | Α | U | Т | О | K | Е | Y |   |   |   |

Only the first characters are missing in the message. For these characters, we guess them. Message: THIS IS THE AUTOKEY

#### c) Consider:

$$\hat{c}_i = \begin{cases} m_i + k_i \pmod{26} & 0 \le i \le n - 1\\ m_i + m_{i-n} \pmod{26} & n \le i \le l - 1 \end{cases}$$

In this case, we know the keylength n and the message m. Therefore, we can obtain the message by:

$$c_i = m_i + m_{i-n} \tag{5}$$

With a Friedmann attack, using the most common characters in the English language, the message can be deciphered with a high probability

d)

| Q | Е | X | Y | I | R | V | E | S | I | U | X | X | K | Q | V | F | L | Н | K | G |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| T |   | Ε |   | Е |   | R |   | В |   | Τ |   | Е |   | Μ |   | Τ |   | О |   | S |
|   | Н |   | R |   | Α |   | Е |   | Е |   | Т |   | R |   | Е |   | Н |   | D |   |

The plaintext is: THERE ARE BETTER METHODS

# Solution of Problem 9

In this exercise, we have to apply the Kasiski-Babbage method as follows:

$$Y_{ij} = \begin{cases} 1 & \text{if } c_i = c_j \\ 0 & \text{else} \end{cases}$$

then

$$E[Y_{ij}] = \begin{cases} k_m & \text{if } c_i = c_j \\ \frac{1}{m} & \text{else} \end{cases}$$

It follows for m = 26 (using English language):

$$k = \frac{0.028433n}{(n-1)I_C - 0.0385n + 0.066895} \tag{6}$$

In our case, the length of the message is n=3568. Therefore,  $k\approx 6.25643$ . The length of the key has to be an integer,  $k\approx 6$ . We use the hint at the beginning of the exercise, getting  $k\approx 5$ .

Once we have the keylength, we perform a frequency analysis of the ciphertext. We create a frequency analysis for each of the 5 columns of the ciphertext. As we know, the most common characters in English language are: E, T, A, O, I, N.

The frequency analysis in detail is as follows:

| Block | Character | Frequency | Char | Frequency | Char | Frequency |
|-------|-----------|-----------|------|-----------|------|-----------|
| 1     | Т         | 89        | I    | 68        | Р    | 61        |
| 2     | Р         | 103       | Е    | 69        | Т    | 56        |
| 3     | Y         | 94        | N    | 63        | С    | 58        |
| 4     | X         | 101       | В    | 59        | G    | 53        |
| 5     | S         | 85        | Н    | 68        | В    | 58        |

Once this analysis is finished. We map the most common character to the character E, the second to T and we do the same with the following. Using this method, we obtain the key:  $Key = (T \to E, P \to E, Y \to E, X \to E, S \to E) = PLUTO$ 

Using this key to decipher the ciphertext, the first sentence of the message is: THE BLACK CAT THE MOST WILD YET THE MOST HOMELY NARRATIVE WHICH I AM ABOUT