Exercise 4 in Cryptography
 - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo 2015-05-07

Solution of Problem 10

The message space of a finite sequence of length $k=11$ is:

$$
\mathcal{M}=\left\{\left(m_{1}, \ldots, m_{11}\right) \mid m_{i} \in \mathcal{X}\right\}
$$

with the alphabet $\mathcal{X}=\{a, b, \ldots, z\}=\{0,1, \ldots, 25\}$, and $|\mathcal{X}|=26$.
In the given task, there are 4 blocks with cyclic permutations. These blocks are not changed if the letters are the same inside each individual block. Unchanged sequences are subsumed by:

$$
\begin{aligned}
& \hat{\mathcal{M}}=\left\{\left(m_{1}, \ldots, m_{11}\right) \mid m_{1} \in \mathcal{X}, m_{2}=m_{11}=m_{5}=m_{8} \in \mathcal{X}, m_{3}=m_{6}=m_{7}=m_{4} \in \mathcal{X},\right. \\
& \left.\quad m_{9}=m_{10} \in \mathcal{X}\right\}
\end{aligned}
$$

The total number of such sequences is $|\hat{\mathcal{M}}|=|\mathcal{X}|^{4}=456976$.
Remark: However, compared to $|\mathcal{M}|=|\mathcal{X}|^{11} \approx 3.6 \cdot 10^{15}$, this is only a minor restriction. (An unchanged plaintext in English is 'MISSISSIPPI'.)

Solution of Problem 11

Theorem 4.3 shall be proven.
a) X is a discrete random variable with $p_{i}=P\left(X=x_{i}\right), i=1, \ldots, m$. It holds

$$
H(X)=-\sum_{i} p_{i} \log \left(p_{i}\right) \geq 0
$$

as $p_{i} \geq 0$ and $-\log \left(p_{i}\right) \geq 0$ for $0<p_{i} \leq 1$ and $0 \cdot \log 0=0$ per definition.
Equality holds, if all addends are zero, i.e.,

$$
p_{i} \log \left(p_{i}\right)=0 \Leftrightarrow p_{i} \in\{0,1\} \quad i=1, \ldots, m,
$$

as $p_{i}>0$ and $-\log \left(p_{i}\right)>0$, thus, $-p_{i} \log \left(p_{i}\right)>0$ for $0<p_{i}<1$.
b) It holds

$$
\begin{aligned}
H(X)-\log (m) & =-\sum_{i} p_{i} \log \left(p_{i}\right)-\underbrace{\sum_{i} p_{i}}_{=1} \log (m) \\
& =\sum_{i: p_{i}>0} p_{i} \log \left(\frac{1}{p_{i} m}\right) \\
& =(\log e) \sum_{i: p_{i}>0} p_{i} \ln \left(\frac{1}{p_{i} m}\right) \\
& \ln (x) \leq x-1 \\
& (\log e) \sum_{i: p_{i}>0} p_{i}\left(\frac{1}{p_{i} m}-1\right) \\
& =(\log e) \sum_{i: p_{i}>0}\left(\frac{1}{m}-p_{i}\right)=0
\end{aligned}
$$

As $\ln (x)=x-1$ only holds for $x=1$ it follows that equality holds iff $p_{i}=1 / m$, $i=1, \ldots, m$. In particular, as $p_{i}=\frac{1}{m}$, it follows $p_{i}>0, i=1, \ldots, m$.

c) Define for $i=1, \ldots, m$ and $j=1, \ldots, d$

$$
p_{i \mid j}=P\left(X=x_{i} \mid Y=y_{j}\right) .
$$

Show $H(X \mid Y)-H(X) \leq 0$ which is equivalent to the claim.

$$
\begin{aligned}
H(X \mid Y)-H(X) & =-\sum_{i, j} p_{i, j} \log \left(p_{i \mid j}\right)+\sum_{i} p_{i} \log \left(p_{i}\right) \\
& =-\sum_{i, j} p_{i, j} \log \left(\frac{p_{i, j}}{p_{j}}\right)+\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log \left(p_{i}\right) \\
& =(\log e) \sum_{i, j: p p_{i, j}>0} p_{i, j} \ln \left(\frac{p_{i} p_{j}}{p_{i, j}}\right) \\
& \stackrel{\ln (x) \leq x-1}{\leq}(\log e) \sum_{i, j: p_{i, j}>0} p_{i, j}\left(\frac{p_{i} p_{j}}{p_{i, j}}-1\right) \\
& =(\log e) \sum_{i, j: p_{i, j}>0}\left(p_{i} p_{j}-p_{i, j}\right)=0
\end{aligned}
$$

Note that from $p_{i, j}>0$ it follows $p_{i}, p_{j}>0$. Equality hold for $p_{i} p_{j}=p_{i, j}$ which is equivalent to X and Y being stochastically independent.
This means that the mutual information $I(X, Y)=H(X)-H(X \mid Y)$ is nonnegative.
d) It holds

$$
\begin{aligned}
H(X, Y) & =-\sum_{i, j} p_{i, j} \log \left(p_{i, j}\right) \\
& =-\sum_{i, j} p_{i, j}\left[\log \left(p_{i, j}\right)-\log \left(p_{i}\right)+\log \left(p_{i}\right)\right] \\
& =-\sum_{i, j} p_{i, j} \log \underbrace{\left(\frac{p_{i, j}}{p_{i}}\right)}_{p_{j \mid i}}-\sum_{i} \underbrace{\sum_{j} p_{i, j}}_{=p_{i}} \log \left(p_{i}\right) \\
& =H(Y \mid X)+H(X) .
\end{aligned}
$$

e) It holds

$$
H(X, Y) \stackrel{(d)}{=} H(X)+H(Y \mid X) \stackrel{(c)}{\leq} H(X)+H(Y)
$$

with equality as in (c) iff X and Y are stochastically independent.

Solution of Problem 12

Show for any function $f: X(\Omega) \times Y(\Omega) \rightarrow \mathbb{R}$, that $H(X, Y, f(X, Y))=H(X, Y)$.
By definition, we have:

$$
H(X, Y, Z=f(X, Y)) \stackrel{\text { Def. }}{=} \sum_{X, Y, Z} P(X=x, Y=y, Z=z) \log (P(X=x, Y=y, Z=z))
$$

With

$$
P(X=x, Y=y, Z=z)=\left\{\begin{array}{ll}
P(X=x, Y=y) & , \text { if } Z=f(X, Y) \\
0 & , \text { if } Z \neq f(X, Y)
\end{array},\right.
$$

it follows that

$$
H(X, Y, Z=f(X, Y))=\sum_{X, Y} P(X=x, Y=y) \log (P(X=x, Y=y))=H(X, Y)
$$

Note: It holds $0 \cdot \log 0=0$.

