Exercise 5 in Cryptography
 - Proposed Solution -

Prof. Dr. Rudolf Mathar, Henning Maier, Jose Angel Leon Calvo

2015-05-21

Solution of Problem 11

Prove Theorem $4.13{ }^{\prime} \Rightarrow$ ' (sufficient solution):
Recall that each element of these sets has a positive probability:

$$
\begin{aligned}
\mathcal{M}_{+} & :=\{M \in \mathcal{M} \mid P(\hat{M}=M)>0\} \\
\mathcal{C}_{+} & :=\{C \in \mathcal{C} \mid P(\hat{C}=C)>0\}
\end{aligned}
$$

Lemma 4.12 provides conditions of perfect secrecy on $\mathcal{M}_{+}, \mathcal{K}_{+}, \mathcal{C}_{+}$.
With Lemma 4.12 a), we obtain:

$$
\left|\mathcal{M}_{+}\right| \leq\left|\mathcal{C}_{+}\right| \stackrel{(I)}{\leq}|\mathcal{C}| \stackrel{(I I)}{=}|\mathcal{M}| \stackrel{(I I I)}{=}\left|\mathcal{M}_{+}\right| .
$$

(I): With $P(\hat{C}=C)>0 \Rightarrow \mathcal{C}_{+} \subseteq \mathcal{C}$.
(II): Given by assumption $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$.
(III): Given by assumption $P(\hat{M}=M)>0, \forall M \in \mathcal{M}$.

By the 'sandwich theorem', i.e., the upper and lower bounds are both equal to $\left|\mathcal{M}_{+}\right|$:

$$
\begin{aligned}
& \Rightarrow\left|\mathcal{C}_{+}\right|=|\mathcal{C}| \Rightarrow \mathcal{C}_{+}=\mathcal{C}, \\
& \Rightarrow P(\hat{C}=C)>0, \forall C \in \mathcal{C} .
\end{aligned}
$$

Let $M \in \mathcal{M}, C \in \mathcal{C}$:

$$
\begin{align*}
& 0<P(\hat{C}=C) \stackrel{(I V)}{=} P(\hat{C}=C \mid \hat{M}=M)=P(e(\hat{M}, \hat{K})=C \mid \hat{M}=M) \\
& \stackrel{(V)}{=} P(e(M, \hat{K})=C)=\sum_{K \in \mathcal{K}: e(M, K)=C} P(\hat{K}=K) \neq 0 \tag{1}\\
& \Rightarrow \forall M \in \mathcal{M}, C \in \mathcal{C} \exists K \in \mathcal{K}: e(M, K)=C .
\end{align*}
$$

(IV): With perfect secrecy as given by Corollary 4.11.
(V): Given by the assumption that \hat{M}, \hat{K} are stochastically independent.

However, (1) is not shown to be unique yet!
(i) $\operatorname{Fix} M \in \mathcal{M}$:

$$
\left|\mathcal{C}_{+}\right|=|\mathcal{C}|=\left|\left\{e(M, K) \mid K \in \mathcal{K}_{+}=\mathcal{K}\right\}\right| \leq|\mathcal{K}| \stackrel{(I I)}{=}|\mathcal{C}|
$$

$\Rightarrow K$ is unique with $K=K(M, C)$ by the 'sandwich theorem'.
(II) Given by assumption $|\mathcal{M}|=|\mathcal{K}|=|\mathcal{C}|$.

Let $M \in \mathcal{M}, C \in \mathcal{C}$:

$$
\Rightarrow P(\hat{C}=C) \stackrel{(1)}{=} P(\hat{K}=K(M, C))
$$

because of perfect secrecy this expression is independent of M.
(ii) Fix $C_{0} \in \mathcal{C}$:

$$
\Rightarrow\left\{K\left(M, C_{0}\right) \mid M \in \mathcal{M}\right\}=\mathcal{K},
$$

because of injectivity of $e(\cdot, K)$, i.e., $e(M, K)=C_{0}$, and by the assumption $|\mathcal{M}|=|\mathcal{C}|$.

$$
\begin{aligned}
& \Rightarrow P(\hat{C}=C)=P(\hat{K}=K) \forall C \in \mathcal{C}, K \in \mathcal{K} \\
& \Rightarrow P(\hat{K}=K)=\frac{1}{|\mathcal{K}|} \forall K \in \mathcal{K} .
\end{aligned}
$$

Solution of Problem 12

For an affine cipher in $\mathbb{Z}_{26}: e(i,(a, b))=a \cdot i+b \bmod 26$

$$
\begin{gathered}
\mathbb{Z}_{26}^{*}=\{1,3,5,7,9,11,15,17,19,21,23,25\}=\{a \mid \operatorname{gcd}(a, 26)=1\} \\
\Rightarrow|\mathcal{K}|=\left|\mathbb{Z}_{26}^{*} \times \mathbb{Z}_{26}\right|=12 \cdot 26
\end{gathered}
$$

Let $M \in \mathcal{M}, C \in \mathcal{C}$

$$
\begin{aligned}
& P(\hat{C}=C \mid \hat{M}=M)=P(e(\hat{M}, \hat{K})=C \mid \hat{M}=M) \\
&(\hat{K}, M \text { stoch. ind.) }=P(e(M, \hat{K})=C \\
&(\hat{K} \text { unif. distr.) } \frac{1}{|\mathcal{K}|}|\{K \in \mathcal{K} \mid e(M, K)=C\}| \\
& \stackrel{(*)}{=} \frac{12}{12 \cdot 26}=\frac{1}{26}
\end{aligned}
$$

$(*): e(M,(a, b))=C \Leftrightarrow a \cdot M+b=C \bmod 26 \Leftrightarrow b=C-a M \bmod 26$
\Rightarrow all keys $(a, C-a M), a \in \mathbb{Z}_{26}^{*}$ satisfy this equation

$$
\begin{gathered}
\Rightarrow P(\hat{C}=C \mid \hat{M}=M)=\frac{1}{26} \forall M \in \mathcal{M}_{+} \\
\Rightarrow P(\hat{C}=C)=\frac{1}{26}=P(\hat{C}=C \mid \hat{M}=M)
\end{gathered}
$$

With Corollary 4.11, the cryptosystem has perfect secrecy, i.e., \hat{C} and \hat{M} are stochastically independent.

Solution of Problem 13

Recall: $H(X)=-\sum_{i} p_{i} \log \left(p_{i}\right)$.
a) $H(\hat{M})=-\frac{1}{4} \log _{2}\left(\frac{1}{4}\right)-\frac{3}{4} \log _{2}\left(\frac{3}{4}\right)=\frac{1}{2}+\frac{3}{2}-\frac{3}{4} \log _{2}(3) \approx 0.811$ $H(\hat{K})=-\frac{1}{2} \log _{2}\left(\frac{1}{2}\right)-2 \frac{1}{4} \log _{2}\left(\frac{1}{4}\right)=\frac{1}{2}+1=1.5$

c	K_{1}	K_{2}	K_{3}	
a	1	2	3	$\frac{1}{4}$
b	2	3	4	$\frac{3}{4}$
	$\frac{1}{2}$	$\frac{1}{4}$	$\frac{1}{4}$	1

$$
\begin{aligned}
& P(\hat{C}=1)=P(\hat{M}=a) \cdot P\left(\hat{K}=K_{1}\right)=\frac{1}{4} \cdot \frac{1}{2}=\frac{1}{8} \\
& P(\hat{C}=2)=P(\hat{M}=a) \cdot P\left(\hat{K}=K_{2}\right)+P(\hat{M}=b) \cdot P\left(\hat{K}=K_{1}\right)=\frac{1}{4} \cdot \frac{1}{4}+\frac{3}{4} \cdot \frac{1}{2}=\frac{7}{16} \\
& P(\hat{C}=4)=P(\hat{M}=b) \cdot P\left(\hat{K}=K_{3}\right)=\frac{3}{4} \cdot \frac{1}{4}=\frac{3}{16} \\
\Rightarrow & P(\hat{C}=3)=1-P(\hat{C}=1)-P(\hat{C}=2)-P(\hat{C}=4)=1-\frac{2}{16}-\frac{7}{16}-\frac{3}{16}=\frac{4}{16} \\
\Rightarrow & H(\hat{C})=-\frac{1}{8} \log _{2}\left(\frac{1}{8}\right)-\frac{7}{16} \log _{2}\left(\frac{7}{16}\right)-\frac{3}{16} \log _{2}\left(\frac{3}{16}\right)-\frac{1}{4} \log _{2}\left(\frac{1}{4}\right) \approx 1.850 \\
\Rightarrow & H(\hat{K} \mid \hat{C}) \stackrel{\text { Thmm }}{=}{ }^{4.7} H(\hat{M})+H(\hat{K})-H(\hat{C}) \approx 0.811+1.5-1.850=0.461
\end{aligned}
$$

b) Lem. 4.12 b$)$ demands $\left|\mathcal{C}_{+}\right| \leq\left|\mathcal{K}_{+}\right|$for perfect secrecy.

But in this case, we get $4=\left|\mathcal{C}_{+}\right|>\left|\mathcal{K}_{+}\right|=3$ 亿

